IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i5p1974-d1347306.html
   My bibliography  Save this article

The Return of Coal-Fired Combined Heat and Power Plants: Feasibility and Environmental Assessment in the Case of Conversion to Another Fuel or Modernizing an Exhaust System

Author

Listed:
  • Stanislav Chicherin

    (Thermo and Fluid Dynamics (FLOW), Faculty of Engineering, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
    Brussels Institute for Thermal-Fluid Systems and Clean Energy (BRITE), Vrije Universiteit Brussel (VUB) and Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium)

  • Andrey Zhuikov

    (Educational and Scientific Laboratory, Siberian Federal University, Svobodny Ave., 79., Krasnoyarsk 660041, Russia)

  • Petr Kuznetsov

    (Educational and Scientific Laboratory, Siberian Federal University, Svobodny Ave., 79., Krasnoyarsk 660041, Russia
    Institute of Chemistry and Chemical Technology, Siberian Branch of RAS, 50/24, Akademgorodok, Krasnoyarsk 660036, Russia)

Abstract

Large city-scale coal-fired combined heat and power (CHP) plants are one of the main contributors to greenhouse gas emissions. The motivation is to find a way to decrease the contributions in the most feasible way possible. The importance of this study is that it presents a methodology for comparing scenarios from both environmental and economic points of view. The scenarios aim to enhance the environmental performance of combustion flue gas-treatment units. The scenarios include installing an advanced electrostatic precipitator (ESP), a hybrid system comprising ESP and a bag filter, a combined cyclone and baghouse filter, a hybrid baghouse filter with novel electrostatic tissue, a wet flue gas desulfurization (WFGD) scrubber, a WFGD with (NH 4 ) 2 SO 4 technology, and fuel conversion (incl. biomass). Each of the scenarios is evaluated according to (a) primary energy consumption, (b) capital (CapEx) and operational (OpEx) costs, and (c) the obtained environmental effect (decreasing emissions of particulate matter (PM), CO 2 , SO 2 , and NO x ). Adopting biomass waste decreases CO 2 emissions by 50%. PM from the coal-fired boiler with particle filtration is lower compared to biomass but is two times higher than that from natural gas. Using advanced filters for a CHP plant decreases total emissions and PM by 2100–2800%. The largest effect on air quality is achieved by filtration and WFGD, with emissions decreasing by 43%. Primary energy consumption is maximal in fuel conversion and ESP scenarios. The conversion to limestone-based WFGD or the installation of a hybrid filter separately are the most viable options, totaling EUR 14.2 billion of CapEx. However, combining several technologies is essential to increase the quality of flue gas treatment.

Suggested Citation

  • Stanislav Chicherin & Andrey Zhuikov & Petr Kuznetsov, 2024. "The Return of Coal-Fired Combined Heat and Power Plants: Feasibility and Environmental Assessment in the Case of Conversion to Another Fuel or Modernizing an Exhaust System," Sustainability, MDPI, vol. 16(5), pages 1-15, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:1974-:d:1347306
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/5/1974/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/5/1974/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Archan, Georg & Anca-Couce, Andrés & Buchmayr, Markus & Hochenauer, Christoph & Gruber, Johann & Scharler, Robert, 2021. "Experimental evaluation of primary measures for NOX and dust emission reduction in a novel 200 kW multi-fuel biomass boiler," Renewable Energy, Elsevier, vol. 170(C), pages 1186-1196.
    2. Ala’a K. Al-Bawwat & Francisco Jurado & Mohamed R. Gomaa & Antonio Cano, 2023. "Availability and the Possibility of Employing Wastes and Biomass Materials Energy in Jordan," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nadaleti, Willian Cézar & Cardozo, Emanuélle & Bittencourt Machado, Jones & Maximilla Pereira, Peterson & Costa dos Santos, Maele & Gomes de Souza, Eduarda & Haertel, Paula & Kunde Correa, Erico & Vie, 2023. "Hydrogen and electricity potential generation from rice husks and persiculture biomass in Rio Grande do Sul, Brazil," Renewable Energy, Elsevier, vol. 216(C).
    2. Bernardine Chigozie Chidozie & Ana Luísa Ramos & José Vasconcelos Ferreira & Luís Pinto Ferreira, 2023. "Residual Agroforestry Biomass Supply Chain Simulation Insights and Directions: A Systematic Literature Review," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    3. César Álvarez-Bermúdez & Sergio Chapela & Luis G. Varela & Miguel Ángel Gómez, 2021. "CFD Simulation of an Internally Cooled Biomass Fixed-Bed Combustion Plant," Resources, MDPI, vol. 10(8), pages 1-19, July.
    4. Zadravec, Tomas & Rajh, Boštjan & Kokalj, Filip & Samec, Niko, 2021. "Influence of air staging strategies on flue gas sensible heat losses and gaseous emissions of a wood pellet boiler: An experimental study," Renewable Energy, Elsevier, vol. 178(C), pages 532-548.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:1974-:d:1347306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.