IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i5p1730-d1342177.html
   My bibliography  Save this article

Quantifying Sectoral Carbon Footprints in Türkiye’s Largest Metropolitan Cities: A Monte Carlo Simulation Approach

Author

Listed:
  • Sena Ecem Yakut Şevik

    (Sustainable Energy and Climate Systems Laboratory, Meteorological Engineering, Aeronautics and Astronautics Faculty, Istanbul Technical University, 34469 Istanbul, Türkiye)

  • Ahmet Duran Şahin

    (Sustainable Energy and Climate Systems Laboratory, Meteorological Engineering, Aeronautics and Astronautics Faculty, Istanbul Technical University, 34469 Istanbul, Türkiye)

Abstract

Urbanization is a substantial contributor to greenhouse gas (GHG) emissions, a pivotal factor in climate change. Climate change represents a global predicament impacting all nations, necessitating collaboration among numerous countries to curtail GHG emissions. An essential step to overcome this problem is the accurate measurement, calculation, and modelling of the amount of damage inflicted on the atmosphere. Therefore, carbon footprints (CFs) originating from various sources are calculated. This study calculates the CF of different sectors in metropolitan cities in Türkiye, which are Istanbul, Ankara, and Izmir, for the years 2015–2020 using the Tier 1 and Tier 2 approaches outlined in the Intergovernmental Panel on Climate Change (IPCC) methodology. Additionally, to account for uncertainties in activity data and emission factors and calculate the potential emission range, a Monte Carlo simulation (MCS) was conducted. Analysis of Tier 1 results revealed the highest emissions consistently occurring in Istanbul across all years, while emissions from other cities exhibited variability annually. Notably, average MCS results surpassed the total emission quantities derived at the study’s conclusion for all cities and years, underscoring the influence of uncertainties. The study results align with the calculated 95% confidence interval, affirming the robustness within the specified statistical framework.

Suggested Citation

  • Sena Ecem Yakut Şevik & Ahmet Duran Şahin, 2024. "Quantifying Sectoral Carbon Footprints in Türkiye’s Largest Metropolitan Cities: A Monte Carlo Simulation Approach," Sustainability, MDPI, vol. 16(5), pages 1-30, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:1730-:d:1342177
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/5/1730/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/5/1730/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Druckman, Angela & Jackson, Tim, 2009. "The carbon footprint of UK households 1990-2004: A socio-economically disaggregated, quasi-multi-regional input-output model," Ecological Economics, Elsevier, vol. 68(7), pages 2066-2077, May.
    2. Gill, Bernhard & Moeller, Simon, 2018. "GHG Emissions and the Rural-Urban Divide. A Carbon Footprint Analysis Based on the German Official Income and Expenditure Survey," Ecological Economics, Elsevier, vol. 145(C), pages 160-169.
    3. Bulut, Umit & Muratoglu, Gonul, 2018. "Renewable energy in Turkey: Great potential, low but increasing utilization, and an empirical analysis on renewable energy-growth nexus," Energy Policy, Elsevier, vol. 123(C), pages 240-250.
    4. Wiedmann, Thomas, 2009. "A review of recent multi-region input-output models used for consumption-based emission and resource accounting," Ecological Economics, Elsevier, vol. 69(2), pages 211-222, December.
    5. Kevin Robert Gurney & Paty Romero-Lankao & Karen C. Seto & Lucy R. Hutyra & Riley Duren & Christopher Kennedy & Nancy B. Grimm & James R. Ehleringer & Peter Marcotullio & Sara Hughes & Stephanie Pince, 2015. "Climate change: Track urban emissions on a human scale," Nature, Nature, vol. 525(7568), pages 179-181, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alberto Gago & Xavier Labandeira & Xiral López Otero, 2014. "A Panorama on Energy Taxes and Green Tax Reforms," Hacienda Pública Española / Review of Public Economics, IEF, vol. 208(1), pages 145-190, March.
    2. Pottier, Antonin, 2022. "Expenditure elasticity and income elasticity of GHG emissions: A survey of literature on household carbon footprint," Ecological Economics, Elsevier, vol. 192(C).
    3. Pottier, Antonin & Combet, Emmanuel & Cayla, Jean-Michel & de Lauretis, Simona & Nadaud, Franck, 2021. "Who emits CO2 ? Landscape of ecological inequalities in France from a critical perspective," FEEM Working Papers 311053, Fondazione Eni Enrico Mattei (FEEM).
    4. Nabernegg, Stefan & Bednar-Friedl, Birgit & Muñoz, Pablo & Titz, Michaela & Vogel, Johanna, 2019. "National Policies for Global Emission Reductions: Effectiveness of Carbon Emission Reductions in International Supply Chains," Ecological Economics, Elsevier, vol. 158(C), pages 146-157.
    5. Caggiani, Leonardo & Ottomanelli, Michele & Dell’Orco, Mauro, 2014. "Handling uncertainty in Multi Regional Input-Output models by entropy maximization and fuzzy programming," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 159-172.
    6. Hermannsson, Kristinn & McIntyre, Stuart G., 2014. "Local consumption and territorial based accounting for CO2 emissions," Ecological Economics, Elsevier, vol. 104(C), pages 1-11.
    7. Anderson, Blake & M'Gonigle, Michael, 2012. "Does ecological economics have a future?," Ecological Economics, Elsevier, vol. 84(C), pages 37-48.
    8. Byun, Jeongeun & Park, Hyun-woo & Hong, Jae Pyo, 2017. "An international comparison of competitiveness in knowledge services," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 203-213.
    9. Satoshi Honma & Yushi Yoshida, 2019. "Convergence in pollution terms of trade," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 28(5), pages 603-627, July.
    10. Yosuke Shigetomi & Keisuke Nansai & Shigemi Kagawa & Susumu Tohno, 2016. "Influence of income difference on carbon and material footprints for critical metals: the case of Japanese households," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-19, December.
    11. Dolter, Brett & Victor, Peter A., 2016. "Casting a long shadow: Demand-based accounting of Canada's greenhouse gas emissions responsibility," Ecological Economics, Elsevier, vol. 127(C), pages 156-164.
    12. Panzone, Luca A. & Wossink, Ada & Southerton, Dale, 2013. "The design of an environmental index of sustainable food consumption: A pilot study using supermarket data," Ecological Economics, Elsevier, vol. 94(C), pages 44-55.
    13. Shigetomi, Yosuke & Nansai, Keisuke & Kagawa, Shigemi & Tohno, Susumu, 2015. "Trends in Japanese households' critical-metals material footprints," Ecological Economics, Elsevier, vol. 119(C), pages 118-126.
    14. Franco Solís, Alberto & F.T. Avelino, André & Carrascal-Incera, André, 2020. "The evolution of household-induced value chains and their environmental implications," Ecological Economics, Elsevier, vol. 174(C).
    15. Laurence Granchamp, 2019. "Adjusting food practices to climate prescriptions: vegetable gardening as a way to reduce food-related greenhouse gas emissions," Review of Agricultural, Food and Environmental Studies, Springer, vol. 100(1), pages 1-25, December.
    16. Jing Tian & Hua Liao & Ce Wang, 2015. "Spatial–temporal variations of embodied carbon emission in global trade flows: 41 economies and 35 sectors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(2), pages 1125-1144, September.
    17. Tian, Xin & Chang, Miao & Lin, Chen & Tanikawa, Hiroki, 2014. "China’s carbon footprint: A regional perspective on the effect of transitions in consumption and production patterns," Applied Energy, Elsevier, vol. 123(C), pages 19-28.
    18. Duarte, Rosa & Mainar, Alfredo & Sánchez-Chóliz, Julio, 2013. "The role of consumption patterns, demand and technological factors on the recent evolution of CO2 emissions in a group of advanced economies," Ecological Economics, Elsevier, vol. 96(C), pages 1-13.
    19. Sanmang Wu & Yalin Lei & Shantong Li, 2017. "Provincial carbon footprints and interprovincial transfer of embodied CO2 emissions in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 537-558, January.
    20. Smetschka, Barbara & Wiedenhofer, Dominik & Egger, Claudine & Haselsteiner, Edeltraud & Moran, Daniel & Gaube, Veronika, 2019. "Time Matters: The Carbon Footprint of Everyday Activities in Austria," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:1730-:d:1342177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.