IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i4p1610-d1339096.html
   My bibliography  Save this article

Assessing the Ecological Cost of Material Flow in China’s Waste Paper Recycling System

Author

Listed:
  • Tiejun Dai

    (College of Economics and Management, Beijing University of Technology, Beijing 100124, China)

Abstract

This article introduces the concept of ecological costs associated with the waste paper recycling system. The costs associated with this process include resource consumption, waste emissions, ecological damage, and production processes. To analyze the ecological costs of deviations from the baseline material flow in a waste paper recycling system, a benchmark material flow diagram is constructed using the material flow analysis method. The diagram illustrates a fully closed one-way material flow of the recycling system, which is highly abstracted and simplified. The study analyzed the ecological costs of the benchmark material flow and the impact of deviations from it. The results suggest that the circulation of materials within and between processes increases the ecological cost of the waste paper recycling system. Furthermore, the release of materials from a process into the environment also contributes to its ecological impact. However, the introduction of external materials into the recycling system can reduce its ecological impact, particularly if these materials are recycled resources. The study emphasizes the significance of considering ecological costs in waste paper recycling systems to minimize their environmental impact.

Suggested Citation

  • Tiejun Dai, 2024. "Assessing the Ecological Cost of Material Flow in China’s Waste Paper Recycling System," Sustainability, MDPI, vol. 16(4), pages 1-18, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1610-:d:1339096
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/4/1610/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/4/1610/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dahlbo, Helena & Ollikainen, Markku & Peltola, Sanna & Myllymaa, Tuuli & Melanen, Matti, 2007. "Combining ecological and economic assessment of options for newspaper waste management," Resources, Conservation & Recycling, Elsevier, vol. 51(1), pages 42-63.
    2. Merrild, Hanna & Damgaard, Anders & Christensen, Thomas H., 2008. "Life cycle assessment of waste paper management: The importance of technology data and system boundaries in assessing recycling and incineration," Resources, Conservation & Recycling, Elsevier, vol. 52(12), pages 1391-1398.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Allacker, K. & Mathieux, F. & Manfredi, S. & Pelletier, N. & De Camillis, C. & Ardente, F. & Pant, R., 2014. "Allocation solutions for secondary material production and end of life recovery: Proposals for product policy initiatives," Resources, Conservation & Recycling, Elsevier, vol. 88(C), pages 1-12.
    2. Murphy, Sinnott & Pincetl, Stephanie, 2013. "Zero waste in Los Angeles: Is the emperor wearing any clothes?," Resources, Conservation & Recycling, Elsevier, vol. 81(C), pages 40-51.
    3. Turner, David A. & Williams, Ian D. & Kemp, Simon, 2015. "Greenhouse gas emission factors for recycling of source-segregated waste materials," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 186-197.
    4. Minoglou, Minas & Komilis, Dimitrios, 2013. "Optimizing the treatment and disposal of municipal solid wastes using mathematical programming—A case study in a Greek region," Resources, Conservation & Recycling, Elsevier, vol. 80(C), pages 46-57.
    5. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Foley, Aoife M. & Rooney, David, 2022. "Decarbonizing the pulp and paper industry: A critical and systematic review of sociotechnical developments and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Margallo, M. & Dominguez-Ramos, A. & Aldaco, R. & Bala, A. & Fullana, P. & Irabien, A., 2014. "Environmental sustainability assessment in the process industry: A case study of waste-to-energy plants in Spain," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 144-155.
    7. Pickin, Joe, 2008. "Representations of environmental concerns in cost–benefit analyses of solid waste recycling," Resources, Conservation & Recycling, Elsevier, vol. 53(1), pages 79-85.
    8. Manfredi, Simone & Goralczyk, Malgorzata, 2013. "Life cycle indicators for monitoring the environmental performance of European waste management," Resources, Conservation & Recycling, Elsevier, vol. 81(C), pages 8-16.
    9. Klöckner, Christian Andreas & Oppedal, Inger Olin, 2011. "General vs. domain specific recycling behaviour—Applying a multilevel comprehensive action determination model to recycling in Norwegian student homes," Resources, Conservation & Recycling, Elsevier, vol. 55(4), pages 463-471.
    10. Ferrão, Paulo & Ribeiro, Paulo & Rodrigues, João & Marques, Alexandra & Preto, Miguel & Amaral, Miguel & Domingos, Tiago & Lopes, Ana & Costa, e Inês, 2014. "Environmental, economic and social costs and benefits of a packaging waste management system: A Portuguese case study," Resources, Conservation & Recycling, Elsevier, vol. 85(C), pages 67-78.
    11. Koller, Martin & Sandholzer, Daniel & Salerno, Anna & Braunegg, Gerhart & Narodoslawsky, Michael, 2013. "Biopolymer from industrial residues: Life cycle assessment of poly(hydroxyalkanoates) from whey," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 64-71.
    12. Lausselet, Carine & Cherubini, Francesco & Oreggioni, Gabriel David & del Alamo Serrano, Gonzalo & Becidan, Michael & Hu, Xiangping & Rørstad, Per Kr. & Strømman, Anders Hammer, 2017. "Norwegian Waste-to-Energy: Climate change, circular economy and carbon capture and storage," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 50-61.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1610-:d:1339096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.