IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i4p1358-d1334117.html
   My bibliography  Save this article

Corrosion Behaviour of Recycled Aluminium AlSi9Cu3(Fe) Machining Chips by Hot Extrusion and Thixoforming

Author

Listed:
  • Senka Gudić

    (Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia)

  • Ladislav Vrsalović

    (Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia)

  • Jure Krolo

    (Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Ruđera Boškovića 32, 21000 Split, Croatia)

  • Aleš Nagode

    (Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, 1000 Ljubljana, Slovenia)

  • Ivana Dumanić Labetić

    (Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Ruđera Boškovića 32, 21000 Split, Croatia)

  • Branimir Lela

    (Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Ruđera Boškovića 32, 21000 Split, Croatia)

Abstract

The corrosion properties of an EN AC AlSi9Cu3(Fe) alloy (reference sample (RS)) and samples produced by recycling chips of RS by direct hot extrusion (DHES) and subsequent thixoforming (TFS) were tested in 0.5 M NaCl solution. The plastic deformation changes the microstructure of RS, and brittle, coarse Si particles and intermetallic compounds (IMCs) were effectively broken into ultrafine-grained particles and redistributed homogeneously into the α-Al matrix in DHES. TFS exhibits a globular structure, and polyhedral clusters rich in Si and IMCs were observed along the grain boundary. Electrochemical measurements combined with surface characterisation show that the microstructure significantly influences the tested samples’ corrosive properties. It was confirmed that corrosion resistance increased in the following order: RS < TFS < DHES. Similarly, the corrosion potential becomes nobler, the corrosion current decreases, the passive area increases, and the oxide layer becomes more stable (higher resistance and thickness). Also, the percentage of the surface affected by corrosion and the volume of pits reduce. The effect of microstructure is particularly pronounced in the level of the corrosion current and the volume of pits formed. The corrosion current of DHES and TFS decreases by 4–5 times, while the pit volume of DHES and TFS decreases by several orders of magnitude compared to RS. The corrosion stability of DHES and TFS in relation to RS is a consequence of the comminution of the Si particles and the IMC. The refined and homogeneous microstructure contributes positively to forming a stable oxide film on DHES and TFS and increases their corrosion resistance in an aggressive environment. The applied recycling method represents an innovative and sustainable process for the recycling of semisolid materials, with lower energy consumption and less greenhouse gas emissions compared to conventional recycling. The fact that the products obtained through recycling have a significantly higher corrosion resistance further increases the economic and environmental impact of the process.

Suggested Citation

  • Senka Gudić & Ladislav Vrsalović & Jure Krolo & Aleš Nagode & Ivana Dumanić Labetić & Branimir Lela, 2024. "Corrosion Behaviour of Recycled Aluminium AlSi9Cu3(Fe) Machining Chips by Hot Extrusion and Thixoforming," Sustainability, MDPI, vol. 16(4), pages 1-19, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1358-:d:1334117
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/4/1358/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/4/1358/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Senka Gudić & Aleš Nagode & Kristina Šimić & Ladislav Vrsalović & Sonja Jozić, 2022. "Corrosion Behavior of Different Types of Stainless Steel in PBS Solution," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    2. Haraldsson, Joakim & Johansson, Maria T., 2018. "Review of measures for improved energy efficiency in production-related processes in the aluminium industry – From electrolysis to recycling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 525-548.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinfeng Han & Bing Feng & Zejun Chen & Zhili Liang & Yuran Chen & Xuemin Liang, 2024. "Simulation and Application of a New Type of Energy-Saving Steel Claw for Aluminum Electrolysis Cells," Sustainability, MDPI, vol. 16(18), pages 1-15, September.
    2. Joakim Haraldsson & Simon Johnsson & Patrik Thollander & Magnus Wallén, 2021. "Taxonomy, Saving Potentials and Key Performance Indicators for Energy End-Use and Greenhouse Gas Emissions in the Aluminium Industry and Aluminium Casting Foundries," Energies, MDPI, vol. 14(12), pages 1-26, June.
    3. Joakim Haraldsson & Maria T. Johansson, 2019. "Barriers to and Drivers for Improved Energy Efficiency in the Swedish Aluminium Industry and Aluminium Casting Foundries," Sustainability, MDPI, vol. 11(7), pages 1-27, April.
    4. Sgouridis, Sgouris & Ali, Mohamed & Sleptchenko, Andrei & Bouabid, Ali & Ospina, Gustavo, 2021. "Aluminum smelters in the energy transition: Optimal configuration and operation for renewable energy integration in high insolation regions," Renewable Energy, Elsevier, vol. 180(C), pages 937-953.
    5. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    6. Liu, Weipeng & Zhao, Chunhui & Peng, Tao & Zhang, Zhongwei & Wan, Anping, 2023. "Simulation-assisted multi-process integrated optimization for greentelligent aluminum casting," Applied Energy, Elsevier, vol. 336(C).
    7. Shen, Angxing & Zhang, Jihong, 2024. "Technologies for CO2 emission reduction and low-carbon development in primary aluminum industry in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    8. Mikhail A. Averbukh & Nikolay A. Zhukov & Stanislav V. Khvorostenko & Vasiliy I. Panteleev, 2019. "Reducing Electric Power Losses in the System of Power Supply Due to Compensation of Higher Harmonics of Currents: Economic and Energy Efficiency Outcomes," International Journal of Energy Economics and Policy, Econjournals, vol. 9(4), pages 396-403.
    9. Liu, Weipeng & Peng, Tao & Kishita, Yusuke & Umeda, Yasushi & Tang, Renzhong & Tang, Wangchujun & Hu, Luoke, 2021. "Critical life cycle inventory for aluminum die casting: A lightweight-vehicle manufacturing enabling technology," Applied Energy, Elsevier, vol. 304(C).
    10. Shaktipada Bhuniya & Biswajit Sarkar & Sarla Pareek, 2019. "Multi-Product Production System with the Reduced Failure Rate and the Optimum Energy Consumption under Variable Demand," Mathematics, MDPI, vol. 7(5), pages 1-20, May.
    11. Joakim Haraldsson & Maria T. Johansson, 2019. "Energy Efficiency in the Supply Chains of the Aluminium Industry: The Cases of Five Products Made in Sweden," Energies, MDPI, vol. 12(2), pages 1-25, January.
    12. Bandeiras, F. & Gomes, M. & Coelho, P. & Fernandes, J., 2020. "Towards net zero energy in industrial and commercial buildings in Portugal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    13. Mitali Sarkar & Biswajit Sarkar & Muhammad Waqas Iqbal, 2018. "Effect of Energy and Failure Rate in a Multi-Item Smart Production System," Energies, MDPI, vol. 11(11), pages 1-21, October.
    14. Irfanullah Khan & Jihed Jemai & Han Lim & Biswajit Sarkar, 2019. "Effect of Electrical Energy on the Manufacturing Setup Cost Reduction, Transportation Discounts, and Process Quality Improvement in a Two-Echelon Supply Chain Management under a Service-Level Constrai," Energies, MDPI, vol. 12(19), pages 1-32, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1358-:d:1334117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.