IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i3p1205-d1330688.html
   My bibliography  Save this article

Sustainable Last-Mile Logistics in Economics Studies: A Systematic Literature Review

Author

Listed:
  • Marina Bertolini

    (Department of Statistical Science, Levi Cases and CRIEP, University of Padua, Via Cesare Battisti 241, 35100 Padua, Italy)

  • Giulia De Matteis

    (Department of Economics and CRIEP, University of Verona, Via Cantarane 24, 37129 Verona, Italy)

  • Alessandro Nava

    (Department of Economics and Management and CRIEP, University of Padua, Via del Santo 33, 35123 Padua, Italy)

Abstract

In recent years, many cities throughout the world are facing the impact of last-mile logistics and the resulting rise in urban traffic and pollution. Effects on the environment have been curbed by these dynamics. Urban traffic has a considerable impact in terms of noise emissions, road safety and air pollution: hence, both public and private parties should undertake innovative solutions for reducing the negative effects of last-mile logistics and improving their operational effectiveness. This study aims to provide a systematic literature review of studies having as their main topic environmentally sustainable last-mile logistics with the perspective of economic studies. The review of the literature reveals that the majority of recent studies have been based on engineering and urban planning approaches. Costs and benefits of last-mile logistics are approached with a public economics focus, gathering details from the different papers, starting with the business studies and then exploring the technology-oriented ones. This study aims to detect the different topics and policies discussed in the literature, and it suggests how to incorporate them in creating new measures and policies for last-mile logistics in the urban area, or for revamping current ones.

Suggested Citation

  • Marina Bertolini & Giulia De Matteis & Alessandro Nava, 2024. "Sustainable Last-Mile Logistics in Economics Studies: A Systematic Literature Review," Sustainability, MDPI, vol. 16(3), pages 1-16, January.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:3:p:1205-:d:1330688
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/3/1205/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/3/1205/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marmiroli, Benedetta & Venditti, Mattia & Dotelli, Giovanni & Spessa, Ezio, 2020. "The transport of goods in the urban environment: A comparative life cycle assessment of electric, compressed natural gas and diesel light-duty vehicles," Applied Energy, Elsevier, vol. 260(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    2. Mattia Rapa & Laura Gobbi & Roberto Ruggieri, 2020. "Environmental and Economic Sustainability of Electric Vehicles: Life Cycle Assessment and Life Cycle Costing Evaluation of Electricity Sources," Energies, MDPI, vol. 13(23), pages 1-16, November.
    3. Guwen Tang & Meng Zhang & Fei Bu, 2023. "Vehicle Environmental Efficiency Evaluation in Different Regions in China: A Combination of the Life Cycle Analysis (LCA) and Two-Stage Data Envelopment Analysis (DEA) Methods," Sustainability, MDPI, vol. 15(15), pages 1-24, August.
    4. Maxwell Woody & Michael T. Craig & Parth T. Vaishnav & Geoffrey M. Lewis & Gregory A. Keoleian, 2022. "Optimizing future cost and emissions of electric delivery vehicles," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1108-1122, June.
    5. Yang, Zijun & Wang, Bowen & Jiao, Kui, 2020. "Life cycle assessment of fuel cell, electric and internal combustion engine vehicles under different fuel scenarios and driving mileages in China," Energy, Elsevier, vol. 198(C).
    6. Matteo Prussi & Lorenzo Laveneziana & Lorenzo Testa & David Chiaramonti, 2022. "Comparing e-Fuels and Electrification for Decarbonization of Heavy-Duty Transports," Energies, MDPI, vol. 15(21), pages 1-17, October.
    7. Shi, Lei & Wu, Rongxin & Lin, Boqiang, 2023. "Where will go for electric vehicles in China after the government subsidy incentives are abolished? A controversial consumer perspective," Energy, Elsevier, vol. 262(PA).
    8. Gil Ribeiro, Carolina & Silveira, Semida, 2024. "The impact of financial incentives on the total cost of ownership of electric light commercial vehicles in EU countries," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    9. Andrea Temporelli & Paola Cristina Brambilla & Elisabetta Brivio & Pierpaolo Girardi, 2022. "Last Mile Logistics Life Cycle Assessment: A Comparative Analysis from Diesel Van to E-Cargo Bike," Energies, MDPI, vol. 15(20), pages 1-18, October.
    10. Li, Chengjiang & Hao, Qianwen & Wang, Honglei & Hu, Yu-jie & Xu, Guoteng & Qin, Quande & Wang, Xiaolin & Negnevitsky, Michael, 2024. "Assessing green methanol vehicles' deployment with life cycle assessment-system dynamics model," Applied Energy, Elsevier, vol. 363(C).
    11. Li, Chengjiang & Jia, Tingwen & Wang, Honglei & Wang, Xiaolin & Negnevitsky, Michael & Hu, Yu-jie & Zhao, Gang & Wang, Liang, 2023. "Assessing the prospect of deploying green methanol vehicles in China from energy, environmental and economic perspectives," Energy, Elsevier, vol. 263(PE).
    12. Oscar Castillo & Roberto Álvarez, 2023. "Electrification of Last-Mile Delivery: A Fleet Management Approach with a Sustainability Perspective," Sustainability, MDPI, vol. 15(24), pages 1-28, December.
    13. Jani Das, 2022. "Comparative life cycle GHG emission analysis of conventional and electric vehicles in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 13294-13333, November.
    14. Ioana-Cristina Badea & Beatrice-Adriana Șerban & Ioana Anasiei & Dumitru Mitrică & Mihai Tudor Olaru & Andrey Rabin & Mariana Ciurdaș, 2023. "The Energy Storage Technology Revolution to Achieve Climate Neutrality," Energies, MDPI, vol. 17(1), pages 1-24, December.
    15. Fangyuan Zheng & Haeng Muk Cho, 2024. "The Comprehensive Effects of Nano Additives on Biodiesel Engines—A Review," Energies, MDPI, vol. 17(16), pages 1-21, August.
    16. Yash Kotak & Carlos Marchante Fernández & Lluc Canals Casals & Bhavya Satishbhai Kotak & Daniel Koch & Christian Geisbauer & Lluís Trilla & Alberto Gómez-Núñez & Hans-Georg Schweiger, 2021. "End of Electric Vehicle Batteries: Reuse vs. Recycle," Energies, MDPI, vol. 14(8), pages 1-15, April.
    17. Diskin, David & Kuhr, Yonah & Ben-Hamo, Ido Yohai & Spatari, Sabrina & Tartakovsky, Leonid, 2023. "Environmental benefits of combined electro-thermo-chemical technology over battery-electric powertrains," Applied Energy, Elsevier, vol. 351(C).
    18. Scorrano, Mariangela & Danielis, Romeo & Giansoldati, Marco, 2021. "Electric light commercial vehicles for a cleaner urban goods distribution. Are they cost competitive?," Research in Transportation Economics, Elsevier, vol. 85(C).
    19. Oliveira, Renata Lúcia Magalhães de & Santos, Igor Vieira & Graciano, Guilherme Fonseca & Cunha Libânio, André Augusto & Kelli de Oliveira, Leise & Bracarense, Lílian dos Santos Fontes Pereira, 2021. "A sustainable approach for urban farming based on city logistics concepts for local production and consumption of vegetables," Research in Transportation Economics, Elsevier, vol. 87(C).
    20. Thomas Märzinger & David Wöss & Petra Steinmetz & Werner Müller & Tobias Pröll, 2021. "Novel Modelling Approach for the Calculation of the Loading Performance of Charging Stations for E-Trucks to Represent Fleet Consumption," Energies, MDPI, vol. 14(12), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:3:p:1205-:d:1330688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.