Residential Load Forecasting Based on Long Short-Term Memory, Considering Temporal Local Attention
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Xu, Lei & Wang, Shengwei & Tang, Rui, 2019. "Probabilistic load forecasting for buildings considering weather forecasting uncertainty and uncertain peak load," Applied Energy, Elsevier, vol. 237(C), pages 180-195.
- Zang, Haixiang & Xu, Ruiqi & Cheng, Lilin & Ding, Tao & Liu, Ling & Wei, Zhinong & Sun, Guoqiang, 2021. "Residential load forecasting based on LSTM fusing self-attention mechanism with pooling," Energy, Elsevier, vol. 229(C).
- Rahman, Aowabin & Srikumar, Vivek & Smith, Amanda D., 2018. "Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks," Applied Energy, Elsevier, vol. 212(C), pages 372-385.
- Litjens, G.B.M.A. & Worrell, E. & van Sark, W.G.J.H.M., 2018. "Assessment of forecasting methods on performance of photovoltaic-battery systems," Applied Energy, Elsevier, vol. 221(C), pages 358-373.
- Imani, Maryam & Ghassemian, Hassan, 2019. "Residential load forecasting using wavelet and collaborative representation transforms," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Haben, Stephen & Arora, Siddharth & Giasemidis, Georgios & Voss, Marcus & Vukadinović Greetham, Danica, 2021. "Review of low voltage load forecasting: Methods, applications, and recommendations," Applied Energy, Elsevier, vol. 304(C).
- Chen, Yongbao & Xu, Peng & Chu, Yiyi & Li, Weilin & Wu, Yuntao & Ni, Lizhou & Bao, Yi & Wang, Kun, 2017. "Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings," Applied Energy, Elsevier, vol. 195(C), pages 659-670.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lee, Juyong & Cho, Youngsang, 2022. "National-scale electricity peak load forecasting: Traditional, machine learning, or hybrid model?," Energy, Elsevier, vol. 239(PD).
- Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
- Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
- Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
- Fan, Jingmin & Zhong, Mingwei & Guan, Yuanpeng & Yi, Siqi & Xu, Cancheng & Zhai, Yanpeng & Zhou, Yongwang, 2024. "An online long-term load forecasting method: Hierarchical highway network based on crisscross feature collaboration," Energy, Elsevier, vol. 299(C).
- Banafshe Parizad & Hassan Ranjbarzadeh & Ali Jamali & Hamid Khayyam, 2024. "An Intelligent Hybrid Machine Learning Model for Sustainable Forecasting of Home Energy Demand and Electricity Price," Sustainability, MDPI, vol. 16(6), pages 1-17, March.
- Gonçalves, Rui & Ribeiro, Vitor Miguel & Pereira, Fernando Lobo, 2023. "Variable Split Convolutional Attention: A novel Deep Learning model applied to the household electric power consumption," Energy, Elsevier, vol. 274(C).
- Sharma, Abhishek & Jain, Sachin Kumar, 2022. "A novel seasonal segmentation approach for day-ahead load forecasting," Energy, Elsevier, vol. 257(C).
- Thomas Steens & Jan-Simon Telle & Benedikt Hanke & Karsten von Maydell & Carsten Agert & Gian-Luca Di Modica & Bernd Engel & Matthias Grottke, 2021. "A Forecast-Based Load Management Approach for Commercial Buildings Demonstrated on an Integration of BEV," Energies, MDPI, vol. 14(12), pages 1-25, June.
- Yue, Naihua & Caini, Mauro & Li, Lingling & Zhao, Yang & Li, Yu, 2023. "A comparison of six metamodeling techniques applied to multi building performance vectors prediction on gymnasiums under multiple climate conditions," Applied Energy, Elsevier, vol. 332(C).
- Behm, Christian & Nolting, Lars & Praktiknjo, Aaron, 2020. "How to model European electricity load profiles using artificial neural networks," Applied Energy, Elsevier, vol. 277(C).
- Gao, Lei & Liu, Tianyuan & Cao, Tao & Hwang, Yunho & Radermacher, Reinhard, 2021. "Comparing deep learning models for multi energy vectors prediction on multiple types of building," Applied Energy, Elsevier, vol. 301(C).
- Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.
- Park, Jungyeon & Alvarenga, Estêvão & Jeon, Jooyoung & Li, Ran & Petropoulos, Fotios & Kim, Hokyun & Ahn, Kwangwon, 2024. "Probabilistic forecast-based portfolio optimization of electricity demand at low aggregation levels," Applied Energy, Elsevier, vol. 353(PB).
- Majdi Frikha & Khaled Taouil & Ahmed Fakhfakh & Faouzi Derbel, 2024. "Predicting Power Consumption Using Deep Learning with Stationary Wavelet," Forecasting, MDPI, vol. 6(3), pages 1-21, September.
- Bo Hu & Jian Xu & Zuoxia Xing & Pengfei Zhang & Jia Cui & Jinglu Liu, 2022. "Short-Term Combined Forecasting Method of Park Load Based on CEEMD-MLR-LSSVR-SBO," Energies, MDPI, vol. 15(8), pages 1-14, April.
- Fazlipour, Zahra & Mashhour, Elaheh & Joorabian, Mahmood, 2022. "A deep model for short-term load forecasting applying a stacked autoencoder based on LSTM supported by a multi-stage attention mechanism," Applied Energy, Elsevier, vol. 327(C).
- Cai, Mengmeng & Pipattanasomporn, Manisa & Rahman, Saifur, 2019. "Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques," Applied Energy, Elsevier, vol. 236(C), pages 1078-1088.
- Xiao, Jin & Li, Yuxi & Xie, Ling & Liu, Dunhu & Huang, Jing, 2018. "A hybrid model based on selective ensemble for energy consumption forecasting in China," Energy, Elsevier, vol. 159(C), pages 534-546.
- Zhongping Liu & Baisong Su & Qingjing Ji & Yan Hu, 2024. "Local Iterative Calculation Method and Fault Analysis of Short-Circuit Current in High-Voltage Grid with Large-Scale New Energy Equipment Integration," Sustainability, MDPI, vol. 16(24), pages 1-17, December.
More about this item
Keywords
residential load forecasting; electric power system; attention mechanism; LSTM; CNN;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:11252-:d:1549820. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.