IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i24p11094-d1546642.html
   My bibliography  Save this article

The Storage and Production of Bioenergy Using Macroalgae Biomass—Part I: Ensiling

Author

Listed:
  • Arlene K. Ditchfield

    (Scottish Association for Marine Science, Oban, PA37 1QA, UK)

  • Philip D. Kerrison

    (Scottish Association for Marine Science, Oban, PA37 1QA, UK
    Hortimare, 1704 CC Heerhugowaard, The Netherlands)

  • Alison Mair

    (Scottish Association for Marine Science, Oban, PA37 1QA, UK)

  • George Hurst

    (Scottish Association for Marine Science, Oban, PA37 1QA, UK)

  • David H. Green

    (Scottish Association for Marine Science, Oban, PA37 1QA, UK)

  • Michele S. Stanley

    (Scottish Association for Marine Science, Oban, PA37 1QA, UK)

  • Jeffrey Fedenko

    (Equilon Enterprises LLC, Houston, TX 77079, USA)

  • Adam D. Hughes

    (Scottish Association for Marine Science, Oban, PA37 1QA, UK)

Abstract

Ensiling is a promising low-cost preservation approach that allows for a year-round supply of kelp feedstock for biofuel production via anaerobic digestion. In this study, farm-grown kelps of known age were ensiled with and without the addition of lactic acid bacterial (LAB) inoculant for a duration of up to one year in order to test long-term storage suitability. The study looked at the impacts of different bacterial inoculums on the chemical and microbial composition over the duration of storage. Significant fluctuations in the pH were observed during ensiling, leading to some cases of secondary fermentation and a loss of volatile components; however, over 12 months, the total mass loss was <2% on average. Biochemical compositional changes occurred in the silage over a period of 12 months, but protein, lipid and carbohydrate content remained suitable for biogas production. Microbial analysis showed variability in the bacterial distribution between the ensiled samples that was coincident with pH variability. Despite this variability, the bacterial communities underwent a succession with a selection for ensilage bacteria and drop in spoilage organisms. This shift supports the viability of this ensiled material for future usage. The impact of ensiling on bioenergy production through anaerobic digestion is explored in the second part of this two-part paper.

Suggested Citation

  • Arlene K. Ditchfield & Philip D. Kerrison & Alison Mair & George Hurst & David H. Green & Michele S. Stanley & Jeffrey Fedenko & Adam D. Hughes, 2024. "The Storage and Production of Bioenergy Using Macroalgae Biomass—Part I: Ensiling," Sustainability, MDPI, vol. 16(24), pages 1-22, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:11094-:d:1546642
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/24/11094/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/24/11094/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kostas, Emily T. & Adams, Jessica M.M. & Ruiz, Héctor A. & Durán-Jiménez, Gabriela & Lye, Gary J., 2021. "Macroalgal biorefinery concepts for the circular bioeconomy: A review on biotechnological developments and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Esper, A. & Mühlbauer, W., 1998. "Solar drying - an effective means of food preservation," Renewable Energy, Elsevier, vol. 15(1), pages 95-100.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nabnean, S. & Janjai, S. & Thepa, S. & Sudaprasert, K. & Songprakorp, R. & Bala, B.K., 2016. "Experimental performance of a new design of solar dryer for drying osmotically dehydrated cherry tomatoes," Renewable Energy, Elsevier, vol. 94(C), pages 147-156.
    2. Murthy, M.V. Ramana, 2009. "A review of new technologies, models and experimental investigations of solar driers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 835-844, May.
    3. Boroze, Tchamye & Desmorieux, Hélène & Méot, Jean-Michel & Marouzé, Claude & Azouma, Yaovi & Napo, Kossi, 2014. "Inventory and comparative characteristics of dryers used in the sub-Saharan zone: Criteria influencing dryer choice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1240-1259.
    4. Li, Zhimin & Zhong, Hao & Tang, Runsheng & Liu, Tao & Gao, Wenfeng & Zhang, Yue, 2006. "Experimental investigation on solar drying of salted greengages," Renewable Energy, Elsevier, vol. 31(6), pages 837-847.
    5. Sharma, Rozi & Malaviya, Piyush, 2023. "Ecosystem services and climate action from a circular bioeconomy perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    6. Amer, Baher M.A. & Gottschalk, Klaus & Hossain, M.A., 2018. "Integrated hybrid solar drying system and its drying kinetics of chamomile," Renewable Energy, Elsevier, vol. 121(C), pages 539-547.
    7. Hamdi, Ilhem & Kooli, Sami & Elkhadraoui, Aymen & Azaizia, Zaineb & Abdelhamid, Fadhel & Guizani, Amenallah, 2018. "Experimental study and numerical modeling for drying grapes under solar greenhouse," Renewable Energy, Elsevier, vol. 127(C), pages 936-946.
    8. Yu, Qiongfen & Zhao, Huirong & Sun, Shengnan & Zhao, Hong & Li, Guoliang & Li, Ming & Wang, Yunfeng, 2019. "Characterization of MgCl2/AC composite adsorbent and its water vapor adsorption for solar drying system application," Renewable Energy, Elsevier, vol. 138(C), pages 1087-1095.
    9. VijayaVenkataRaman, S. & Iniyan, S. & Goic, Ranko, 2012. "A review of solar drying technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2652-2670.
    10. García-Valladares, O. & Ortiz, N.M. & Pilatowsky, I. & Menchaca, A.C., 2020. "Solar thermal drying plant for agricultural products. Part 1: Direct air heating system," Renewable Energy, Elsevier, vol. 148(C), pages 1302-1320.
    11. Sangamithra, A. & Swamy, Gabriela John & Prema, R. Sorna & Priyavarshini, R. & Chandrasekar, V. & Sasikala, S., 2014. "An overview of a polyhouse dryer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 902-910.
    12. Koppiahraj Karuppiah & Bathrinath Sankaranarayanan & Syed Mithun Ali & Ernesto D. R. Santibanez Gonzalez, 2023. "Impact of Circular Bioeconomy on Industry’s Sustainable Performance: A Critical Literature Review and Future Research Directions Analysis," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    13. Fudholi, A. & Sopian, K. & Ruslan, M.H. & Alghoul, M.A. & Sulaiman, M.Y., 2010. "Review of solar dryers for agricultural and marine products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 1-30, January.
    14. Tiwari, Sumit & Tiwari, G.N. & Al-Helal, I.M., 2016. "Development and recent trends in greenhouse dryer: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1048-1064.
    15. Sharshir, Swellam W. & Joseph, Abanob & Elsayad, Mamoun M. & Hamed, Mofreh H. & Kandeal, A.W., 2024. "Thermo-enviroeconomic assessment of a solar dryer of two various commodities," Energy, Elsevier, vol. 295(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:11094-:d:1546642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.