IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i24p10856-d1541602.html
   My bibliography  Save this article

Development of Delay and Disruption Cause Monitoring Framework for Megaprojects: A Claim Management Approach from the Contractor’s Perspective to Enhance Sustainability in the Built Environment

Author

Listed:
  • Ozan Okudan

    (Department of Civil Engineering, Yıldız Technical University, Davutpaşa Caddesi, 34220 Istanbul, Turkey)

  • Murat Çevikbaş

    (Department of Civil Engineering, Isparta University of Applied Sciences, 32260 Isparta, Turkey)

  • Zeynep Işık

    (Department of Civil Engineering, Yıldız Technical University, Davutpaşa Caddesi, 34220 Istanbul, Turkey)

Abstract

Delays and disruptions (D&D) are considered chronic peculiarities of the construction phase of the built environment, especially in megaprojects. Systematic monitoring of claimable D&D causes becomes crucial for the contractors to compensate for their losses caused by delays and disruptions, enabling sustainable use of resources. Thus, this study proposed a delay and disruption (D&D) cause monitoring framework that enables contractors to timely and accurately detect claimable delays and disruption causes/events in megaprojects. At the outset, a systematic literature review was conducted to design an initial version of the framework and extract claimable D&D. Then, focus group discussion (FGD) sessions were conducted to revise and refine the initial version of the framework and a list of claimable D&D causes. Next, a fuzzy Analytical Hierarchy Process (AHP) analysis was conducted to determine the relative importance of each claimable D&D cause in terms of its impact on the megaprojects. Finally, a consistency analysis was conducted to demonstrate the reliability of the dataset. Findings revealed that claimable D&D causes are indispensable parts of the claim management process. In this manner, the proposed framework recommends monitoring the claimable D&D causes regularly during the whole construction phase of the megaprojects. The fuzzy AHP analysis also revealed that causes such as “Suspension of project activities by the owner”, “Errors and clashes in the design”, “Shortage of construction materials in the market”, “Discovery of fossils and historical artifacts”, “Unavailability of the commissioning team on the due date”, and “Late delivery of testing materials and utilities by the owner” were particularly rated as highly critical causes, needing urgent and sophisticated monitoring plan for timely detection and data collection. By introducing a proactive approach to avoid lengthy and costly dispute resolution processes, this study enables decision-makers to enhance sustainability in the built environment.

Suggested Citation

  • Ozan Okudan & Murat Çevikbaş & Zeynep Işık, 2024. "Development of Delay and Disruption Cause Monitoring Framework for Megaprojects: A Claim Management Approach from the Contractor’s Perspective to Enhance Sustainability in the Built Environment," Sustainability, MDPI, vol. 16(24), pages 1-24, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:10856-:d:1541602
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/24/10856/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/24/10856/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiao-ling Yang & Jie-hua Ding & Hui Hou, 2013. "Application of a triangular fuzzy AHP approach for flood risk evaluation and response measures analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 657-674, September.
    2. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    3. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    4. Bent Flyvbjerg, 2014. "What You Should Know About Megaprojects, and Why: An Overview," Papers 1409.0003, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yangfan Xiao & Shanzhen Yi & Zhongqian Tang, 2018. "A Spatially Explicit Multi-Criteria Analysis Method on Solving Spatial Heterogeneity Problems for Flood Hazard Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3317-3335, August.
    2. Shubham Gupta & Raghav Khanna & Pranay Kohli & Sarthak Agnihotri & Umang Soni & M. Asjad, 2023. "Risk evaluation of electric vehicle charging infrastructure using Fuzzy AHP – a case study in India," Operations Management Research, Springer, vol. 16(1), pages 245-258, March.
    3. Mohammad Ebrahim Banihabib & Mohammad Hadi Shabestari, 2017. "Fuzzy Hybrid MCDM Model for Ranking the Agricultural Water Demand Management Strategies in Arid Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 495-513, January.
    4. Diane Coyle & Marianne Sensier, 2020. "The imperial treasury: appraisal methodology and regional economic performance in the UK," Regional Studies, Taylor & Francis Journals, vol. 54(3), pages 283-295, March.
    5. Benyou Jia & Slobodan P. Simonovic & Pingan Zhong & Zhongbo Yu, 2016. "A Multi-Objective Best Compromise Decision Model for Real-Time Flood Mitigation Operations of Multi-Reservoir System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3363-3387, August.
    6. Schreiner, Lena & Madlener, Reinhard, 2022. "Investing in power grid infrastructure as a flexibility option: A DSGE assessment for Germany," Energy Economics, Elsevier, vol. 107(C).
    7. Shanshan Hu & Xiangjun Cheng & Demin Zhou & Hong Zhang, 2017. "GIS-based flood risk assessment in suburban areas: a case study of the Fangshan District, Beijing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1525-1543, July.
    8. Pasura Aungkulanon & Walailak Atthirawong & Pongchanun Luangpaiboon & Wirachchaya Chanpuypetch, 2024. "Navigating Supply Chain Resilience: A Hybrid Approach to Agri-Food Supplier Selection," Mathematics, MDPI, vol. 12(10), pages 1-42, May.
    9. Juan Carlos Martín & Veronika Rudchenko & María-Victoria Sánchez-Rebull, 2020. "The Role of Nationality and Hotel Class on Guests’ Satisfaction. A Fuzzy-TOPSIS Approach Applied in Saint Petersburg," Administrative Sciences, MDPI, vol. 10(3), pages 1-24, September.
    10. Jelena Lukić & Mirjana Misita & Dragan D. Milanović & Ankica Borota-Tišma & Aleksandra Janković, 2022. "Determining the Risk Level in Client Analysis by Applying Fuzzy Logic in Insurance Sector," Mathematics, MDPI, vol. 10(18), pages 1-17, September.
    11. Sharma, Mahak & Antony, Rose & Sehrawat, Rajat & Cruz, Angel Contreras & Daim, Tugrul U., 2022. "Exploring post-adoption behaviors of e-service users: Evidence from the hospitality sector /online travel services," Technology in Society, Elsevier, vol. 68(C).
    12. Alexander Budzier & Bent Flyvbjerg & Andi Garavaglia & Andreas Leed, 2019. "Quantitative Cost and Schedule Risk Analysis of Nuclear Waste Storage," Papers 1901.11123, arXiv.org.
    13. Abdulwaheed Tella & Abdul-Lateef Balogun, 2020. "Ensemble fuzzy MCDM for spatial assessment of flood susceptibility in Ibadan, Nigeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2277-2306, December.
    14. Francesco Di Maddaloni & Roya Derakhshan, 2019. "A Leap from Negative to Positive Bond. A Step towards Project Sustainability," Administrative Sciences, MDPI, vol. 9(2), pages 1-19, June.
    15. Bent Flyvbjerg & Alexander Budzier & M. D. Christodoulou & M. Zottoli, 2024. "Uniqueness Bias: Why It Matters, How to Curb It," Papers 2408.07710, arXiv.org.
    16. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    17. Chia-Nan Wang & Ngoc-Ai-Thy Nguyen & Thanh-Tuan Dang & Chen-Ming Lu, 2021. "A Compromised Decision-Making Approach to Third-Party Logistics Selection in Sustainable Supply Chain Using Fuzzy AHP and Fuzzy VIKOR Methods," Mathematics, MDPI, vol. 9(8), pages 1-27, April.
    18. Love, Peter E.D. & Ika, Lavagnon A. & Ahiaga-Dagbui, Dominic D., 2019. "On de-bunking ‘fake news’ in a post truth era: Why does the Planning Fallacy explanation for cost overruns fall short?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 397-408.
    19. Finocchiaro Castro, Massimo & Guccio, Calogero & Rizzo, Ilde, 2023. "“One-size-fits-all” public works contract does it better? An assessment of infrastructure provision in Italy," Journal of Policy Modeling, Elsevier, vol. 45(5), pages 994-1014.
    20. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:10856-:d:1541602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.