IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i23p10560-d1534899.html
   My bibliography  Save this article

Evolutionary Game Analysis of China–Laos Electric Power Cooperation

Author

Listed:
  • Yaqing Liu

    (School of Economics, Yunnan University, Kunming 650091, China)

  • Lifeng Zhang

    (School of Business and Tourism Management, Yunnan University, Kunming 650091, China)

  • Yushang Hu

    (School of Business and Tourism Management, Yunnan University, Kunming 650091, China)

  • Zanxin Wang

    (School of Business and Tourism Management, Yunnan University, Kunming 650091, China)

Abstract

Cross-border power cooperation is considered a pathway for optimal regional use of renewable resources and the reduction of carbon emissions. To enhance such cooperation, it is essential to understand the game behaviors of the involved parties. This study applied evolutionary game theory (EGT) and system dynamics (SD) methods to analyze the factors influencing strategic choices and cooperation benefits in the China–Laos electricity cooperation. An EGT model was first developed to examine the interactive behavior of both parties and the stability of strategies. Subsequently, an SD model of EGT was constructed to simulate the evolutionary game process, explore the intrinsic mechanisms of the evolutionary game, and analyze the factors affecting strategy selection. The results show that: (1) the gaming behaviors cannot be ignored in cross-border power cooperation; (2) compared to the cross-border trade scenario, the strategic cooperation will generate more benefits for the parties involved and thus will be selected as the cooperation game evolves; (3) the initial strategy ratio of both parties is crucial, influencing the direction of strategy evolution and the time to reach equilibrium; (4) the choice of system cooperation strategy is affected by the unit profit of electricity trade, input cost, incremental return, trade volume, transaction cost, excess return, fine for agreement violation, and the ratio of benefit allocation, among which the former three are critical.

Suggested Citation

  • Yaqing Liu & Lifeng Zhang & Yushang Hu & Zanxin Wang, 2024. "Evolutionary Game Analysis of China–Laos Electric Power Cooperation," Sustainability, MDPI, vol. 16(23), pages 1-20, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10560-:d:1534899
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/23/10560/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/23/10560/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Jun & Qin, Yanjun & Zhou, Jingyang, 2021. "Incentive policies for prefabrication implementation of real estate enterprises: An evolutionary game theory-based analysis," Energy Policy, Elsevier, vol. 156(C).
    2. Ramesh Ananda Vaidya & Niru Yadav & Nirjan Rai & Saumitra Neupane & Aditi Mukherji, 2021. "Electricity trade and cooperation in the BBIN region: lessons from global experience," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 37(3), pages 439-465, May.
    3. Zhang, Yan & Wang, Si-Xia & Yao, Jian-Ting & Tong, Rui-Peng, 2023. "The impact of behavior safety management system on coal mine work safety: A system dynamics model of quadripartite evolutionary game," Resources Policy, Elsevier, vol. 82(C).
    4. Antweiler, Werner, 2016. "Cross-border trade in electricity," Journal of International Economics, Elsevier, vol. 101(C), pages 42-51.
    5. Karbasioun, Matin & Gholamalipour, Afshin & Safaie, Nasser & Shirazizadeh, Rasool & Amidpour, Majid, 2023. "Developing sustainable power systems by evaluating techno-economic, environmental, and social indicators from a system dynamics approach," Utilities Policy, Elsevier, vol. 82(C).
    6. Friedman, Daniel, 1991. "Evolutionary Games in Economics," Econometrica, Econometric Society, vol. 59(3), pages 637-666, May.
    7. Li, Ye & Yang, Tianjian & Zhang, Yu, 2022. "Evolutionary game theory-based system dynamics modeling for community solid waste classification in China," Utilities Policy, Elsevier, vol. 79(C).
    8. Zhikun Ding & Wenyan Gong & Shenghan Li & Zezhou Wu, 2018. "System Dynamics versus Agent-Based Modeling: A Review of Complexity Simulation in Construction Waste Management," Sustainability, MDPI, vol. 10(7), pages 1-13, July.
    9. Zhu, Chaoping & Fan, Ruguo & Lin, Jinchai, 2020. "The impact of renewable portfolio standard on retail electricity market: A system dynamics model of tripartite evolutionary game," Energy Policy, Elsevier, vol. 136(C).
    10. Kanyako, Franklyn & Lamontagne, Jonathan & Baker, Erin & Turner, Sean & Wild, Thomas, 2023. "Seasonality and trade in hydro-heavy electricity markets: A case study with the West Africa Power Pool (WAPP)," Applied Energy, Elsevier, vol. 329(C).
    11. Dingbang, Cang & Cang, Chen & Qing, Chen & Lili, Sui & Caiyun, Cui, 2021. "Does new energy consumption conducive to controlling fossil energy consumption and carbon emissions?-Evidence from China," Resources Policy, Elsevier, vol. 74(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamali, Mohammad-Bagher & Rasti-Barzoki, Morteza & Khosroshahi, Hossein & Altmann, Jörn, 2022. "An evolutionary game-theoretic approach to study the technological transformation of the industrial sector toward renewable electricity procurement: A case study of Iran," Applied Energy, Elsevier, vol. 318(C).
    2. Zhao, Tian & Liu, Zhixin & Jamasb, Tooraj, 2022. "Developing hydrogen refueling stations: An evolutionary game approach and the case of China," Energy Economics, Elsevier, vol. 115(C).
    3. Yangyang Li & Jianing Sun & Juan Chen & Jinlei Li & Li Sun & Kewang Cao, 2024. "How to Promote the Development of Cultural and Creative Industries from an Evolutionary Game Perspective: Policy Mechanisms for Certification + Incentives," Sustainability, MDPI, vol. 16(11), pages 1-38, May.
    4. Dan Yu & Caihong Zhang & Siyi Wang & Lan Zhang, 2023. "Evolutionary Game and Simulation Analysis of Power Plant and Government Behavior Strategies in the Coupled Power Generation Industry of Agricultural and Forestry Biomass and Coal," Energies, MDPI, vol. 16(3), pages 1-19, February.
    5. Ye Gao & Renfu Jia & Yi Yao & Jiahui Xu, 2022. "Evolutionary Game Theory and the Simulation of Green Building Development Based on Dynamic Government Subsidies," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    6. Yingxiu Zhao & Sitong Zhou, 2023. "The Impact of Two-Sided Market Platforms on Participants’ Trading Strategies: An Evolutionary Game Analysis," Mathematics, MDPI, vol. 11(8), pages 1-18, April.
    7. Yang, Kun & Wang, Wan & Xiong, Wan, 2021. "Promoting the sustainable development of infrastructure projects through responsible innovation: An evolutionary game analysis," Utilities Policy, Elsevier, vol. 70(C).
    8. Zhang, Mengdi & Shen, Qiao & Zhao, Zhiheng & Wang, Shuaian & Huang, George Q., 2024. "Commitment or rent-seeking? Government incentive policies for ESG reporting in sustainable e-commerce logistics," International Journal of Production Economics, Elsevier, vol. 268(C).
    9. Qiyun Huang & Junwu Wang & Mengwei Ye & Shiman Zhao & Xiang Si, 2022. "A Study on the Incentive Policy of China’s Prefabricated Residential Buildings Based on Evolutionary Game Theory," Sustainability, MDPI, vol. 14(3), pages 1-22, February.
    10. Leng Yi & Fukuda Hiroatsu, 2022. "Incentives for Innovation in Robotics and Automated Construction: Based on a Tripartite Evolutionary Game Analysis," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    11. Yanmin Ouyang & Haoran Zhao, 2022. "Evolutionary Game Analysis of Collaborative Prevention and Control for Public Health Emergencies," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
    12. Wang, Xinru & Long, Ruyin & Chen, Hong & Wang, Yujie & Shi, Yanmin & Yang, Shuhan & Wu, Meifen, 2024. "How to promote the trading in China's green electricity market? Based on environmental perceptions, renewable portfolio standard and subsidies," Renewable Energy, Elsevier, vol. 222(C).
    13. Dong, Zhuojia & Yu, Xianyu & Chang, Ching-Ter & Zhou, Dequn & Sang, Xiuzhi, 2022. "How does feed-in tariff and renewable portfolio standard evolve synergistically? An integrated approach of tripartite evolutionary game and system dynamics," Renewable Energy, Elsevier, vol. 186(C), pages 864-877.
    14. Yu, Hui & Li, Ying & Wang, Wei, 2023. "Optimal innovation strategies of automakers with market competition under the dual-credit policy," Energy, Elsevier, vol. 283(C).
    15. Zhao, Tian & Liu, Zhixin & Jamasb, Tooraj, 2021. "Developing Hydrogen Infrastructure and Demand: An Evolutionary Game and the Case of China," Working Papers 18-2021, Copenhagen Business School, Department of Economics.
    16. Noushin Islam & Malindu Sandanayake & Shobha Muthukumaran & Dimuth Navaratna, 2024. "Review on Sustainable Construction and Demolition Waste Management—Challenges and Research Prospects," Sustainability, MDPI, vol. 16(8), pages 1-30, April.
    17. Dehghan, Hamed & Amin-Naseri, Mohammad Reza & Nahavandi, Nasim, 2021. "A system dynamics model to analyze future electricity supply and demand in Iran under alternative pricing policies," Utilities Policy, Elsevier, vol. 69(C).
    18. Qianru Chen & Hualin Xie & Qunli Zhai, 2022. "Management Policy of Farmers’ Cultivated Land Abandonment Behavior Based on Evolutionary Game and Simulation Analysis," Land, MDPI, vol. 11(3), pages 1-23, February.
    19. Lichi Zhang & Yanyan Jiang & Junmin Wu, 2022. "Evolutionary Game Analysis of Government and Residents’ Participation in Waste Separation Based on Cumulative Prospect Theory," IJERPH, MDPI, vol. 19(21), pages 1-16, November.
    20. Rüdisüli, Martin & Romano, Elliot & Eggimann, Sven & Patel, Martin K., 2022. "Decarbonization strategies for Switzerland considering embedded greenhouse gas emissions in electricity imports," Energy Policy, Elsevier, vol. 162(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10560-:d:1534899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.