IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i23p10557-d1534909.html
   My bibliography  Save this article

Tail-End Evaluation Based on the Cost-Effectiveness of Bridge Life Cycles

Author

Listed:
  • Shiyu Zhao

    (National Key Laboratory of Bridge Safety and Resilience, Beijing University of Technology, Beijing 100124, China
    Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China)

  • Xiaolin Meng

    (School of Instrument Science and Engineering, Southeast University, Nanjing 211189, China
    Faculty of Engineering, Imperial College London, London SW7 2AZ, UK)

  • Yan Bao

    (National Key Laboratory of Bridge Safety and Resilience, Beijing University of Technology, Beijing 100124, China
    Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China)

  • Liangliang Hu

    (National Key Laboratory of Bridge Safety and Resilience, Beijing University of Technology, Beijing 100124, China
    Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China)

  • Jinpei Li

    (National Key Laboratory of Bridge Safety and Resilience, Beijing University of Technology, Beijing 100124, China
    Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China)

Abstract

The number of bridges in China is increasing year by year. The contradiction between the declining performance of bridge structures and the increasing traffic volume in China is becoming increasingly prominent, causing a concentrated upsurge in operation and maintenance needs during the service life of the bridges. In accordance with the goal and vision of the comprehensive construction of the Bridge Structural Health Monitoring (BSHM) system, the study of bridge cost-effectiveness now focuses on the installation, operation, and maintenance costs of the BSHM system, the renovation costs of bridge structure repair and maintenance, and the benefits of the BSHM system in assisting in expansion of the service life of bridges. In this study, a new cost-effectiveness framework is proposed that could be used for the operation and maintenance period. The cost-effectiveness framework is constructed from five perspectives: installation, operation, and maintenance costs of the BSHM system; repair and renovation costs during the operation and maintenance period; demolition costs; operation benefits during the operation and maintenance period; and the recovery benefits. The difference between costs and benefits is calculated to evaluate the cost-effectiveness, the service life, and the structural reliability of bridges, in order to provide auxiliary decision making for bridges. A bridge in China is used as an example; the difference between the reliability and operation of the bridge and the maintenance benefits and costs corresponding to different operating times is calculated, and maintenance decision analysis is performed. This can greatly extend the service time of the bridge without major repairs when the bridge reliability meets the requirements. Therefore, the BSHM operation and maintenance cost-effectiveness framework reduces resource waste, reduces operation and maintenance costs, and maximizes resource utilization and benefits, while ensuring the safety of the bridge structure and extending the service life of the bridge.

Suggested Citation

  • Shiyu Zhao & Xiaolin Meng & Yan Bao & Liangliang Hu & Jinpei Li, 2024. "Tail-End Evaluation Based on the Cost-Effectiveness of Bridge Life Cycles," Sustainability, MDPI, vol. 16(23), pages 1-18, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10557-:d:1534909
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/23/10557/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/23/10557/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nguyen, Dinh Hoa & Chapman, Andrew & Farabi-Asl, Hadi, 2019. "Nation-wide emission trading model for economically feasible carbon reduction in Japan," Applied Energy, Elsevier, vol. 255(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haoran Zhang & Rongxia Zhang & Guomin Li & Wei Li & Yongrok Choi, 2020. "Has China’s Emission Trading System Achieved the Development of a Low-Carbon Economy in High-Emission Industrial Subsectors?," Sustainability, MDPI, vol. 12(13), pages 1-20, July.
    2. Fei Yang & Chunchen Wang, 2023. "Clean energy, emission trading policy, and CO2 emissions: Evidence from China," Energy & Environment, , vol. 34(5), pages 1657-1673, August.
    3. Tan, Xiujie & Sun, Qian & Wang, Meiji & Se Cheong, Tsun & Yan Shum, Wai & Huang, Jinpeng, 2022. "Assessing the effects of emissions trading systems on energy consumption and energy mix," Applied Energy, Elsevier, vol. 310(C).
    4. Wenke Wang & Xiaoqiong You & Kebei Liu & Yenchun Jim Wu & Daming You, 2020. "Implementation of a Multi-Agent Carbon Emission Reduction Strategy under the Chinese Dual Governance System: An Evolutionary Game Theoretical Approach," IJERPH, MDPI, vol. 17(22), pages 1-21, November.
    5. Jingkuang Liu & Zhengjie Huang & Xuetong Wang, 2020. "Economic and Environmental Assessment of Carbon Emissions from Demolition Waste Based on LCA and LCC," Sustainability, MDPI, vol. 12(16), pages 1-21, August.
    6. Xianpu Xu & Shan Li, 2022. "Neighbor-Companion or Neighbor-Beggar? Estimating the Spatial Spillover Effects of Fiscal Decentralization on China’s Carbon Emissions Based on Spatial Econometric Analysis," Sustainability, MDPI, vol. 14(16), pages 1-26, August.
    7. Andrianesis, Panagiotis & Biskas, Pandelis & Liberopoulos, George, 2021. "Evaluating the cost of emissions in a pool-based electricity market," Applied Energy, Elsevier, vol. 298(C).
    8. Yuuki Yoshimoto & Koki Kishimoto & Kanchan Kumar Sen & Takako Mochida & Andrew Chapman, 2023. "Toward Economically Efficient Carbon Reduction: Contrasting Greening Plastic Supply Chains with Alternative Energy Policy Approaches," Sustainability, MDPI, vol. 15(17), pages 1-19, September.
    9. Dinh Hoa Nguyen & Andrew Chapman & Takeshi Tsuji, 2023. "Assessing the Optimal Contributions of Renewables and Carbon Capture and Storage toward Carbon Neutrality by 2050," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    10. Zha, Donglan & Jiang, Pansong & Zhang, Chaoqun & Xia, Dan & Cao, Yang, 2023. "Positive synergy or negative synergy: An assessment of the carbon emission reduction effect of renewable energy policy mixes on China's power sector," Energy Policy, Elsevier, vol. 183(C).
    11. Gao, Kang & Yuan, Yijun, 2021. "The effect of innovation-driven development on pollution reduction: Empirical evidence from a quasi-natural experiment in China," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    12. Chapman, Andrew & Shigetomi, Yosuke & Karmaker, Shamal Chandra & Saha, Bidyut & Brooks, Caleb, 2022. "Cultural and demographic energy system awareness and preference: Implications for future energy system design in the United States," Energy Economics, Elsevier, vol. 112(C).
    13. Shenhai Huang & Chao Du & Xian Jin & Daini Zhang & Shiyan Wen & Yu’an Wang & Zhenyu Cheng & Zhijie Jia, 2022. "The Boundary of Porter Hypothesis: The Energy and Economic Impact of China’s Carbon Neutrality Target in 2060," Energies, MDPI, vol. 15(23), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10557-:d:1534909. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.