IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v255y2019ics0306261919315569.html
   My bibliography  Save this article

Nation-wide emission trading model for economically feasible carbon reduction in Japan

Author

Listed:
  • Nguyen, Dinh Hoa
  • Chapman, Andrew
  • Farabi-Asl, Hadi

Abstract

The issue of climate change and the development of international agreements around carbon targets such as the Paris agreement have engendered the prospect of a carbon constrained future. As a result, individual nations who are signatory to the Paris Agreement have developed ambitious carbon reduction targets in order to restrict temperature rises to two degrees Celsius compared to pre-industrial levels. To achieve these ambitious goals, nations have a variety of policy approaches at their disposal including feed in tariffs, fossil fuel restrictions, carbon capture and storage, renewable portfolio standards and carbon trading regimes. This study investigates carbon trading, and, using Japan as a case study assesses the economic feasibility and environmental efficiency of a carbon trading scheme underpinned by renewable energy deployment. The model employed uses an optimization approach, cognizant of technological, geographic and economic constraints. Findings identify that such an approach incorporating the 47 prefectures of Japan could engender a 42% reduction in emissions without resilience constraints and 34% incorporating a best-mix, resilient approach. Both approaches prove feasible at moderate carbon prices, considering international norms. The findings underpin policy implications for a future national Japanese emission trading scheme to improve previous single prefecture attempts which did not engender carbon trading.

Suggested Citation

  • Nguyen, Dinh Hoa & Chapman, Andrew & Farabi-Asl, Hadi, 2019. "Nation-wide emission trading model for economically feasible carbon reduction in Japan," Applied Energy, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:appene:v:255:y:2019:i:c:s0306261919315569
    DOI: 10.1016/j.apenergy.2019.113869
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919315569
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113869?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haoran Zhang & Rongxia Zhang & Guomin Li & Wei Li & Yongrok Choi, 2020. "Has China’s Emission Trading System Achieved the Development of a Low-Carbon Economy in High-Emission Industrial Subsectors?," Sustainability, MDPI, vol. 12(13), pages 1-20, July.
    2. Yuuki Yoshimoto & Koki Kishimoto & Kanchan Kumar Sen & Takako Mochida & Andrew Chapman, 2023. "Toward Economically Efficient Carbon Reduction: Contrasting Greening Plastic Supply Chains with Alternative Energy Policy Approaches," Sustainability, MDPI, vol. 15(17), pages 1-19, September.
    3. Fei Yang & Chunchen Wang, 2023. "Clean energy, emission trading policy, and CO2 emissions: Evidence from China," Energy & Environment, , vol. 34(5), pages 1657-1673, August.
    4. Tan, Xiujie & Sun, Qian & Wang, Meiji & Se Cheong, Tsun & Yan Shum, Wai & Huang, Jinpeng, 2022. "Assessing the effects of emissions trading systems on energy consumption and energy mix," Applied Energy, Elsevier, vol. 310(C).
    5. Xianpu Xu & Shan Li, 2022. "Neighbor-Companion or Neighbor-Beggar? Estimating the Spatial Spillover Effects of Fiscal Decentralization on China’s Carbon Emissions Based on Spatial Econometric Analysis," Sustainability, MDPI, vol. 14(16), pages 1-26, August.
    6. Jingkuang Liu & Zhengjie Huang & Xuetong Wang, 2020. "Economic and Environmental Assessment of Carbon Emissions from Demolition Waste Based on LCA and LCC," Sustainability, MDPI, vol. 12(16), pages 1-21, August.
    7. Andrianesis, Panagiotis & Biskas, Pandelis & Liberopoulos, George, 2021. "Evaluating the cost of emissions in a pool-based electricity market," Applied Energy, Elsevier, vol. 298(C).
    8. Wenke Wang & Xiaoqiong You & Kebei Liu & Yenchun Jim Wu & Daming You, 2020. "Implementation of a Multi-Agent Carbon Emission Reduction Strategy under the Chinese Dual Governance System: An Evolutionary Game Theoretical Approach," IJERPH, MDPI, vol. 17(22), pages 1-21, November.
    9. Dinh Hoa Nguyen & Andrew Chapman & Takeshi Tsuji, 2023. "Assessing the Optimal Contributions of Renewables and Carbon Capture and Storage toward Carbon Neutrality by 2050," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    10. Gao, Kang & Yuan, Yijun, 2021. "The effect of innovation-driven development on pollution reduction: Empirical evidence from a quasi-natural experiment in China," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    11. Chapman, Andrew & Shigetomi, Yosuke & Karmaker, Shamal Chandra & Saha, Bidyut & Brooks, Caleb, 2022. "Cultural and demographic energy system awareness and preference: Implications for future energy system design in the United States," Energy Economics, Elsevier, vol. 112(C).
    12. Shenhai Huang & Chao Du & Xian Jin & Daini Zhang & Shiyan Wen & Yu’an Wang & Zhenyu Cheng & Zhijie Jia, 2022. "The Boundary of Porter Hypothesis: The Energy and Economic Impact of China’s Carbon Neutrality Target in 2060," Energies, MDPI, vol. 15(23), pages 1-18, December.
    13. Zha, Donglan & Jiang, Pansong & Zhang, Chaoqun & Xia, Dan & Cao, Yang, 2023. "Positive synergy or negative synergy: An assessment of the carbon emission reduction effect of renewable energy policy mixes on China's power sector," Energy Policy, Elsevier, vol. 183(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:255:y:2019:i:c:s0306261919315569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.