IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i23p10404-d1531233.html
   My bibliography  Save this article

Optimizing Hempcrete Properties Through Thermal Treatment of Hemp Hurds for Enhanced Sustainability in Green Building

Author

Listed:
  • Veronica D’Eusanio

    (Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
    National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Firenze, Italy)

  • Mirco Rivi

    (Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
    National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Firenze, Italy)

  • Daniele Malferrari

    (Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
    Interdepartmental Research Center BIOGEST-SITEIA, University of Modena and Reggio Emilia, 42124 Reggio Emilia, Italy)

  • Andrea Marchetti

    (Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
    National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Firenze, Italy
    Interdepartmental Research Center BIOGEST-SITEIA, University of Modena and Reggio Emilia, 42124 Reggio Emilia, Italy)

Abstract

This study examines the effects of the thermal pre-treatment of hemp hurds on the physical, mechanical, and thermal properties of hempcrete, evaluating its potential as a sustainable building material. Hemp hurds were pre-treated at various temperatures (120–280 °C) and characterized by proximate analysis, CHNS elemental analysis, and thermogravimetric analysis (TGA). The resulting hempcrete samples were analyzed for density, water absorption, compressive strength, and thermal conductivity. Three different hempcrete formulations, with varying lime:hemp proportions, were analyzed. The findings indicate that higher pre-treatment temperatures lead to reduced density and water absorption across all formulations. Formulations containing a higher hemp hurd content had lower densities but higher water absorption values. Compressive strength increased consistently with the pre-treatment temperature, suggesting that higher temperatures enhance matrix bonding and structural rigidity, and with the lime content. However, thermal conductivity also rose with pre-treatment, with only the composition containing the highest hemp hurd content maintaining the optimal insulation threshold (0.1 W/mK). This suggests a trade-off between compressive strength and insulation performance, influenced by the balance of hemp hurd and lime content. These findings underscore the potential of thermal pre-treatment to tailor hempcrete properties, promoting its application as a durable, moisture-resistant material for sustainable building, though the optimization of hurd–lime ratios remains essential.

Suggested Citation

  • Veronica D’Eusanio & Mirco Rivi & Daniele Malferrari & Andrea Marchetti, 2024. "Optimizing Hempcrete Properties Through Thermal Treatment of Hemp Hurds for Enhanced Sustainability in Green Building," Sustainability, MDPI, vol. 16(23), pages 1-18, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10404-:d:1531233
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/23/10404/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/23/10404/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Veronica D’Eusanio & Antonio Lezza & Biagio Anderlini & Daniele Malferrari & Marcello Romagnoli & Fabrizio Roncaglia, 2024. "Technological Prospects of Biochar Derived from Viticulture Waste: Characterization and Application Perspectives," Energies, MDPI, vol. 17(14), pages 1-14, July.
    2. Ding, Yanming & Huang, Biqing & Li, Kaiyuan & Du, Wenzhou & Lu, Kaihua & Zhang, Yansong, 2020. "Thermal interaction analysis of isolated hemicellulose and cellulose by kinetic parameters during biomass pyrolysis," Energy, Elsevier, vol. 195(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Juan & Sun, Lulu & Zhang, Jiaqing & Ding, Yanming & Chen, Wenlu & Zhong, Yu, 2021. "Kinetic parameters estimation and reaction model modification for thermal degradation of Beizao oil shale based on thermogravimetric analysis coupled with deconvolution procedure," Energy, Elsevier, vol. 229(C).
    2. Chen, Jian & Song, Ye & Yu, Yueyang & Xiao, Guoqing & Tam, Wai Cheong & Kong, Depeng, 2022. "The influence of a plate obstacle on the burning behavior of small scale pool fires: An experimental study," Energy, Elsevier, vol. 254(PB).
    3. Ding, Yanming & Chen, Wenlu & Zhang, Wenlong & Zhang, Xueting & Li, Changhai & Zhou, Ru & Miao, Fasheng, 2022. "Experimental and numerical simulation study of typical semi-transparent material pyrolysis with in-depth radiation based on micro and bench scales," Energy, Elsevier, vol. 258(C).
    4. Chen, Zhiyun & Chen, Huashan & Wu, Xieyuan & Zhang, Junhui & Evrendilek, Deniz Eren & Liu, Jingyong & Liang, Guanjie & Li, Weixin, 2021. "Temperature- and heating rate-dependent pyrolysis mechanisms and emissions of Chinese medicine residues and numerical reconstruction and optimization of their non-linear dynamics," Renewable Energy, Elsevier, vol. 164(C), pages 1408-1423.
    5. Tariq, Rumaisa & Mohd Zaifullizan, Yasmin & Salema, Arshad Adam & Abdulatif, Atiqah & Ken, Loke Shun, 2022. "Co-pyrolysis and co-combustion of orange peel and biomass blends: Kinetics, thermodynamic, and ANN application," Renewable Energy, Elsevier, vol. 198(C), pages 399-414.
    6. Lingna Zhong & Juan Zhang & Yanming Ding, 2020. "Energy Utilization of Algae Biomass Waste Enteromorpha Resulting in Green Tide in China: Pyrolysis Kinetic Parameters Estimation Based on Shuffled Complex Evolution," Sustainability, MDPI, vol. 12(5), pages 1-10, March.
    7. Ma, Xin & Wang, Junling & Li, Lun & Wang, Xuan & Gong, Junhui, 2024. "Co-pyrolysis model for polylactic acid (PLA)/wood composite and its application in predicting combustion behaviors," Renewable Energy, Elsevier, vol. 225(C).
    8. Zhang, Wenlong & Zhang, Juan & Ding, Yanming & Zhou, Ru & Mao, Shaohua, 2022. "The accuracy of multiple methods for estimating the reaction order of representative thermoplastic polymers waste for energy utilization," Energy, Elsevier, vol. 239(PB).
    9. Escalante, Jamin & Chen, Wei-Hsin & Tabatabaei, Meisam & Hoang, Anh Tuan & Kwon, Eilhann E. & Andrew Lin, Kun-Yi & Saravanakumar, Ayyadurai, 2022. "Pyrolysis of lignocellulosic, algal, plastic, and other biomass wastes for biofuel production and circular bioeconomy: A review of thermogravimetric analysis (TGA) approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    10. Veronica D’Eusanio & Lucia Bertacchini & Andrea Marchetti & Mattia Mariani & Stefano Pastorelli & Michele Silvestri & Lorenzo Tassi, 2023. "Rosaceae Nut-Shells as Sustainable Aggregate for Potential Use in Non-Structural Lightweight Concrete," Waste, MDPI, vol. 1(2), pages 1-20, June.
    11. Zhang, Juan & Sun, Lulu & Zhong, Yu & Ding, Yanming & Du, Wenzhou & Lu, Kaihua & Jia, Jia, 2022. "Kinetic model and parameters optimization for Tangkou bituminous coal by the bi-Gaussian function and Shuffled Complex Evolution," Energy, Elsevier, vol. 243(C).
    12. Ding, Yanming & Jiang, Gonghua & Fukumoto, Kazui & Zhao, Mengqi & Zhang, Xueting & Wang, Changjian & Li, Changhai, 2023. "Experimental and numerical simulation of multi-component combustion of typical no-charring material," Energy, Elsevier, vol. 262(PB).
    13. Song, Gongxiang & Huang, Dexin & Ren, Qiangqiang & Hu, Song & Xu, Jun & Xu, Kai & Jiang, Long & Wang, Yi & Su, Sheng & Xiang, Jun, 2024. "Inner-particle reaction mechanism of cellulose, hemicellulose and lignin during photo-thermal pyrolysis process: Evolution characteristics of free radicals," Energy, Elsevier, vol. 297(C).
    14. Wu, Kai & Yang, Ke & Zhu, Yiwen & Luo, Bingbing & Chu, Chenyang & Li, Mingfan & Zhang, Yuanjian & Zhang, Huiyan, 2023. "The co-pyrolysis interactionsof isolated lignins and cellulose by experiments and theoretical calculations," Energy, Elsevier, vol. 263(PC).
    15. Hua, Yun & Nie, Wen & Liu, Qiang & Yin, Shuai & Peng, Huitian, 2020. "Effect of wind curtain on dust extraction in rock tunnel working face: CFD and field measurement analysis," Energy, Elsevier, vol. 197(C).
    16. Haoyu Pan & Junhui Gong, 2023. "Application of Particle Swarm Optimization (PSO) Algorithm in Determining Thermodynamics of Solid Combustibles," Energies, MDPI, vol. 16(14), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10404-:d:1531233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.