IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i22p10126-d1525123.html
   My bibliography  Save this article

Evaluation and External Driving Factors Analysis of Water–Energy–Food Resilience Security—Based on Spatial Durbin Model and Four Provinces Along the Yellow River

Author

Listed:
  • Ruopeng Huang

    (School of Economics and Management, Taiyuan Normal University, Jinzhong 030619, China)

  • Haibin Liu

    (School of Management, China University of Mining and Techology, Beijing 100083, China)

Abstract

Research on water–energy–food security is crucial for ensuring the sustainable development of human society. Building on the water–energy–food theory and resilience concepts, a novel perspective termed “resilience security” was proposed. This differs from traditional approaches focused on coordination security and efficiency security. An indicator evaluation system consisting of 29 indicators was developed. Panel data from 2009 to 2022 in 40 cities across Shandong, Shanxi, Henan, and Shaanxi Provinces along the Yellow River were used to assess local water–energy–food resilience security. The nine external driving factors were empirically analyzed in different provinces using a spatial Durbin model. The findings indicate that: (1) over the 14-year period, the water––energy–food resilience security of the sample transitioned from a near-exposure state to an initial resistance state; and (2) over the 14-year period, administrative power, market power, resource flow capacity, population density, industrial structure, urbanization level, scientific and technological inputs, environmental governance inputs, and spatial geographic factors significantly influenced regional water–energy–food resilience security, with notable variations across provinces.

Suggested Citation

  • Ruopeng Huang & Haibin Liu, 2024. "Evaluation and External Driving Factors Analysis of Water–Energy–Food Resilience Security—Based on Spatial Durbin Model and Four Provinces Along the Yellow River," Sustainability, MDPI, vol. 16(22), pages 1-18, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:10126-:d:1525123
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/22/10126/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/22/10126/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sharifi, Ayyoob & Yamagata, Yoshiki, 2016. "Principles and criteria for assessing urban energy resilience: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1654-1677.
    2. Hasanzadeh Saray, Marzieh & Baubekova, Aziza & Gohari, Alireza & Eslamian, Seyed Saeid & Klove, Bjorn & Torabi Haghighi, Ali, 2022. "Optimization of Water-Energy-Food Nexus considering CO2 emissions from cropland: A case study in northwest Iran," Applied Energy, Elsevier, vol. 307(C).
    3. Gatto, Andrea & Drago, Carlo, 2020. "Measuring and modeling energy resilience," Ecological Economics, Elsevier, vol. 172(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Kangyin & Dong, Xiucheng & Jiang, Qingzhe & Zhao, Jun, 2021. "Assessing energy resilience and its greenhouse effect: A global perspective," Energy Economics, Elsevier, vol. 104(C).
    2. Ziyi Wang & Zengqiao Chen & Cuiping Ma & Ronald Wennersten & Qie Sun, 2022. "Nationwide Evaluation of Urban Energy System Resilience in China Using a Comprehensive Index Method," Sustainability, MDPI, vol. 14(4), pages 1-36, February.
    3. Jin-Li Hu & Tien-Yu Chang, 2023. "Energy Resilience: A Cross-Economy Comparison," Energies, MDPI, vol. 16(5), pages 1-21, February.
    4. Kuang, Biao & Shi, Yangming & Hu, Yuqing & Zeng, Zhaoyun & Chen, Jianli, 2024. "Household energy resilience in extreme weather events: An investigation of energy service importance, HVAC usage behaviors, and willingness to pay," Applied Energy, Elsevier, vol. 363(C).
    5. Faure, Corinne & Guetlein, Marie-Charlotte & Schleich, Joachim & Tu, Gengyang & Whitmarsh, Lorraine & Whittle, Colin, 2022. "Household acceptability of energy efficiency policies in the European Union: Policy characteristics trade-offs and the role of trust in government and environmental identity," Ecological Economics, Elsevier, vol. 192(C).
    6. Drago, Carlo & Gatto, Andrea, 2022. "Policy, regulation effectiveness, and sustainability in the energy sector: A worldwide interval-based composite indicator," Energy Policy, Elsevier, vol. 167(C).
    7. Zhang, Y.F. & Li, Y.P. & Huang, G.H. & Zhai, X.B. & Ma, Y., 2024. "Improving efficiency and sustainability of water-agriculture-energy nexus in a transboundary river basin under climate change: A double-sided stochastic factional optimization method," Agricultural Water Management, Elsevier, vol. 292(C).
    8. Mujjuni, F. & Betts, T. & To, L.S. & Blanchard, R.E., 2021. "Resilience a means to development: A resilience assessment framework and a catalogue of indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    9. Yusuke Toyoda, 2021. "Survey paper: achievements and perspectives of community resilience approaches to societal systems," Asia-Pacific Journal of Regional Science, Springer, vol. 5(3), pages 705-756, October.
    10. Ahmadi, Somayeh & Saboohi, Yadollah & Vakili, Ali, 2021. "Frameworks, quantitative indicators, characters, and modeling approaches to analysis of energy system resilience: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    11. Andrea Di Ronco & Francesca Giacobbo & Antonio Cammi, 2020. "A Kalman Filter-Based Approach for Online Source-Term Estimation in Accidental Radioactive Dispersion Events," Sustainability, MDPI, vol. 12(23), pages 1-19, November.
    12. Guglielmina Mutani & Valeria Todeschi & Simone Beltramino, 2020. "Energy Consumption Models at Urban Scale to Measure Energy Resilience," Sustainability, MDPI, vol. 12(14), pages 1-31, July.
    13. Sedigheh Meimandi Parizi & Mohammad Taleai & Ayyoob Sharifi, 2022. "A GIS-Based Multi-Criteria Analysis Framework to Evaluate Urban Physical Resilience against Earthquakes," Sustainability, MDPI, vol. 14(9), pages 1-31, April.
    14. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    15. Liu, Hanchen & Wang, Chong & Ju, Ping & Li, Hongyu, 2022. "A sequentially preventive model enhancing power system resilience against extreme-weather-triggered failures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    16. Pilar Murias & Beatriz Valcárcel-Aguiar & Rosa María Regueiro-Ferreira, 2020. "A Territorial Estimate for Household Energy Vulnerability: An Application for Spain," Sustainability, MDPI, vol. 12(15), pages 1-21, July.
    17. Zhang, Wei & Valencia, Andrea & Gu, Lixing & Zheng, Qipeng P. & Chang, Ni-Bin, 2020. "Integrating emerging and existing renewable energy technologies into a community-scale microgrid in an energy-water nexus for resilience improvement," Applied Energy, Elsevier, vol. 279(C).
    18. Child, Michael & Koskinen, Otto & Linnanen, Lassi & Breyer, Christian, 2018. "Sustainability guardrails for energy scenarios of the global energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 321-334.
    19. Liu, Yang & Dong, Kangyin & Jiang, Qingzhe, 2023. "Assessing energy vulnerability and its impact on carbon emissions: A global case," Energy Economics, Elsevier, vol. 119(C).
    20. repec:zna:indecs:v:19:y:2021:i:4:p:391-401 is not listed on IDEAS
    21. Nepal, Rabindra & Zhao, Xiaomeng & Liu, Yang & Dong, Kangyin, 2024. "Can green finance strengthen energy resilience? The case of China," Technological Forecasting and Social Change, Elsevier, vol. 202(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:10126-:d:1525123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.