IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i20p9035-d1501803.html
   My bibliography  Save this article

Choosing Recovery Strategies for Waste Electronics: How Product Modularity Influences Cooperation and Competition

Author

Listed:
  • Xuxin Lai

    (School of Management, Xi’an Jiaotong University, Xi’an 710049, China
    The Key Lab of the Ministry of Education for Process Management & Efficiency Engineering, Xi’an 710049, China
    ERC for Process Mining of Manufacturing Services in Shaanxi Province, Xi’an 710049, China)

  • Nengmin Wang

    (School of Management, Xi’an Jiaotong University, Xi’an 710049, China
    The Key Lab of the Ministry of Education for Process Management & Efficiency Engineering, Xi’an 710049, China
    ERC for Process Mining of Manufacturing Services in Shaanxi Province, Xi’an 710049, China)

  • Bin Jiang

    (Driehaus College of Business, DePaul University, Chicago, IL 60604, USA)

  • Tao Jia

    (School of Management, Xi’an Jiaotong University, Xi’an 710049, China
    The Key Lab of the Ministry of Education for Process Management & Efficiency Engineering, Xi’an 710049, China
    ERC for Process Mining of Manufacturing Services in Shaanxi Province, Xi’an 710049, China)

Abstract

Modular design facilitates easy disassembly and reduces the manufacturer’s remanufacturing costs. However, the simplicity and modular structure of products can intensify competition between manufacturers and third-party recyclers. To improve recovery efficiency, this study examines the impact of modular design on the manufacturer’s selection of recovery strategies, including centralized, cooperation, and competition strategies. We examine the optimal recovery strategy for achieving both economic goals, such as supply chain profit, and environmental goals, such as collection quantity. Our results indicate that the manufacturer should adopt cooperation recovery and invest in higher modularity when faced with strong competition from third-party recyclers. Conversely, when the competitiveness of third-party recovery is relatively low, a competition recovery strategy is more advantageous. Contrary to conventional wisdom, which suggests limiting product disassembly to reduce third-party recovery competitiveness, our results indicate that manufacturers should invest in higher modularity and avoid engaging in price wars to prevent third-party entry. Moreover, competition recovery leads to a higher collection quantity, while cooperation recovery is preferred in terms of supply chain profit. This study provides theoretical guidance for manufacturers in selecting optimal recovery strategies and offers recommendations for governments on regulating product disassembly effectively.

Suggested Citation

  • Xuxin Lai & Nengmin Wang & Bin Jiang & Tao Jia, 2024. "Choosing Recovery Strategies for Waste Electronics: How Product Modularity Influences Cooperation and Competition," Sustainability, MDPI, vol. 16(20), pages 1-31, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:20:p:9035-:d:1501803
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/20/9035/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/20/9035/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mukhopadhyay, Samar K. & Ma, Huafan, 2009. "Joint procurement and production decisions in remanufacturing under quality and demand uncertainty," International Journal of Production Economics, Elsevier, vol. 120(1), pages 5-17, July.
    2. Li, Qingying, 2018. "The optimal multi-period modular design with fairness concerns," International Journal of Production Economics, Elsevier, vol. 206(C), pages 233-249.
    3. Wang, Nengmin & He, Qidong & Jiang, Bin, 2019. "Hybrid closed-loop supply chains with competition in recycling and product markets," International Journal of Production Economics, Elsevier, vol. 217(C), pages 246-258.
    4. Sezer Ülkü & Claudiu V. Dimofte & Glen M. Schmidt, 2012. "Consumer Valuation of Modularly Upgradeable Products," Management Science, INFORMS, vol. 58(9), pages 1761-1776, September.
    5. Chen, Cheng-Kang & Ulya, M. Akmalul ', 2019. "Analyses of the reward-penalty mechanism in green closed-loop supply chains with product remanufacturing," International Journal of Production Economics, Elsevier, vol. 210(C), pages 211-223.
    6. Maryam Esmaeili & Ghazaleh Allameh & Taraneh Tajvidi, 2016. "Using game theory for analysing pricing models in closed-loop supply chain from short- and long-term perspectives," International Journal of Production Research, Taylor & Francis Journals, vol. 54(7), pages 2152-2169, April.
    7. He, Qidong & Wang, Nengmin & Yang, Zhen & He, Zhengwen & Jiang, Bin, 2019. "Competitive collection under channel inconvenience in closed-loop supply chain," European Journal of Operational Research, Elsevier, vol. 275(1), pages 155-166.
    8. Xin Lu & Fangchao Xu & Fan Qin, 2024. "Remanufacturing Operations in Different Financial Ownership Structures with Consideration of the Upwards Supplier," Sustainability, MDPI, vol. 16(8), pages 1-21, April.
    9. Jie Wei & Weiyu Chen & Guoxin Liu, 2021. "How manufacturer's integration strategies affect closed-loop supply chain performance," International Journal of Production Research, Taylor & Francis Journals, vol. 59(14), pages 4287-4305, July.
    10. Kumar Jena, Sarat & Sarmah, S.P, 2014. "Price competition and co-operation in a duopoly closed-loop supply chain," International Journal of Production Economics, Elsevier, vol. 156(C), pages 346-360.
    11. Cao, Jian & Wu, Sisi & Kumar, Sanjay, 2023. "Recovering and remanufacturing to fulfill EPR regulation in the presence of secondary market," International Journal of Production Economics, Elsevier, vol. 263(C).
    12. Bai, Qingguo & Gong, Yeming (Yale) & Jin, Mingzhou & Xu, Xianhao, 2019. "Effects of carbon emission reduction on supply chain coordination with vendor-managed deteriorating product inventory," International Journal of Production Economics, Elsevier, vol. 208(C), pages 83-99.
    13. Genc, Talat S. & De Giovanni, Pietro, 2020. "Closed-loop supply chain games with innovation-led lean programs and sustainability," International Journal of Production Economics, Elsevier, vol. 219(C), pages 440-456.
    14. Qingguo Bai & Yeming Gong & Mingzhou Jin & Xianhao Xu, 2019. "Effects of carbon emission reduction on supply chain coordination with vendor-managed deteriorating product inventory," Post-Print hal-02312264, HAL.
    15. Xiaohua Han & Ying Shen & Yiwen Bian, 2020. "Optimal recovery strategy of manufacturers: Remanufacturing products or recycling materials?," Annals of Operations Research, Springer, vol. 290(1), pages 463-489, July.
    16. Sendil K. Ethiraj & Daniel Levinthal & Rishi R. Roy, 2008. "The Dual Role of Modularity: Innovation and Imitation," Management Science, INFORMS, vol. 54(5), pages 939-955, May.
    17. Feng, Lipan & Govindan, Kannan & Li, Chunfa, 2017. "Strategic planning: Design and coordination for dual-recycling channel reverse supply chain considering consumer behavior," European Journal of Operational Research, Elsevier, vol. 260(2), pages 601-612.
    18. Kleber, Rainer & Reimann, Marc & Souza, Gilvan C. & Zhang, Weihua, 2020. "Two-sided competition with vertical differentiation in both acquisition and sales in remanufacturing," European Journal of Operational Research, Elsevier, vol. 284(2), pages 572-587.
    19. He, Qidong & Wang, Nengmin & Browning, Tyson R. & Jiang, Bin, 2022. "Competitive collection with convenience-perceived customers," European Journal of Operational Research, Elsevier, vol. 303(1), pages 239-254.
    20. Vishal Agrawal & Atalay Atasu & Sezer Ülkü, 2021. "Leasing, Modularity, and the Circular Economy," Management Science, INFORMS, vol. 67(11), pages 6782-6802, November.
    21. Katarzyna Kańska & Agnieszka Wiszniewska-Matyszkiel, 2022. "Dynamic Stackelberg duopoly with sticky prices and a myopic follower," Operational Research, Springer, vol. 22(4), pages 4221-4252, September.
    22. De Giovanni, Pietro & Zaccour, Georges, 2014. "A two-period game of a closed-loop supply chain," European Journal of Operational Research, Elsevier, vol. 232(1), pages 22-40.
    23. Wang, Jian & He, Shulin, 2023. "Government interventions in closed-loop supply chains with modularity design," International Journal of Production Economics, Elsevier, vol. 264(C).
    24. R. Canan Savaskan & Shantanu Bhattacharya & Luk N. Van Wassenhove, 2004. "Closed-Loop Supply Chain Models with Product Remanufacturing," Management Science, INFORMS, vol. 50(2), pages 239-252, February.
    25. Andre P. Calmon & Stephen C. Graves, 2017. "Inventory Management in a Consumer Electronics Closed-Loop Supply Chain," Manufacturing & Service Operations Management, INFORMS, vol. 19(4), pages 568-585, October.
    26. Xiang Chu & Qiuyan Zhong & Xue Li, 2018. "Reverse channel selection decisions with a joint third-party recycler," International Journal of Production Research, Taylor & Francis Journals, vol. 56(18), pages 5969-5981, September.
    27. Xiaoxuan Sun & Guangcheng Ma, 2024. "Research on Carbon Cap Regulation, Retailer Altruistic Preferences, and Green Decision-Making of Manufacturing Enterprises," Sustainability, MDPI, vol. 16(17), pages 1-23, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Qidong & Wang, Nengmin & Browning, Tyson R. & Jiang, Bin, 2022. "Competitive collection with convenience-perceived customers," European Journal of Operational Research, Elsevier, vol. 303(1), pages 239-254.
    2. Matsui, Kenji, 2022. "Optimal timing of acquisition price announcement for used products in a dual-recycling channel reverse supply chain," European Journal of Operational Research, Elsevier, vol. 300(2), pages 615-632.
    3. Ehsan Shekarian & Simme Douwe Flapper, 2021. "Analyzing the Structure of Closed-Loop Supply Chains: A Game Theory Perspective," Sustainability, MDPI, vol. 13(3), pages 1-32, January.
    4. Wang, Yong & Jiang, Qiong & Guan, Xu & Guan, Xiangyang, 2023. "Recycling channel design and coordination in a reverse supply chain with customer green preference," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    5. Matsui, Kenji, 2023. "Dual-recycling channel reverse supply chain design of recycling platforms under acquisition price competition," International Journal of Production Economics, Elsevier, vol. 259(C).
    6. Zheng, Xiao-Xue & Li, Deng-Feng & Liu, Zhi & Jia, Fu & Sheu, Jiuh-Biing, 2019. "Coordinating a closed-loop supply chain with fairness concerns through variable-weighted Shapley values," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 227-253.
    7. Fu, Lingxian & Tang, Jie & Meng, Fanyong, 2021. "A disease transmission inspired closed-loop supply chain dynamic model for product collection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    8. Jalali, Hamed & Ansaripoor, Amir H. & De Giovanni, Pietro, 2020. "Closed-loop supply chains with complementary products," International Journal of Production Economics, Elsevier, vol. 229(C).
    9. Zhang, Zhichao & Xu, Haiyan & Chen, Kebing & Zhao, Yingxue & Liu, Zhi, 2023. "Channel mode selection for an e-platform supply chain in the presence of a secondary marketplace," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1215-1235.
    10. He, Qidong & Wang, Nengmin & Yang, Zhen & He, Zhengwen & Jiang, Bin, 2019. "Competitive collection under channel inconvenience in closed-loop supply chain," European Journal of Operational Research, Elsevier, vol. 275(1), pages 155-166.
    11. Zhang, Abraham & Wang, Jason X. & Farooque, Muhammad & Wang, Yulan & Choi, Tsan-Ming, 2021. "Multi-dimensional circular supply chain management: A comparative review of the state-of-the-art practices and research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    12. Gunasekara, Lahiru & Robb, David J. & Zhang, Abraham, 2023. "Used product acquisition, sorting and disposition for circular supply chains: Literature review and research directions," International Journal of Production Economics, Elsevier, vol. 260(C).
    13. Wang, Yuyan & Yu, Zhaoqing & Shen, Liang & Jin, Mingzhou, 2022. "Operational modes of E-closed loop supply chain considering platforms’ services," International Journal of Production Economics, Elsevier, vol. 251(C).
    14. Qi Wang & Kebing Chen & Shengbin Wang & Xiaogang Cao, 2022. "Optimal decisions in a closed-loop supply chain: fairness concerns, corporate social responsibility and information value," Annals of Operations Research, Springer, vol. 309(1), pages 277-304, February.
    15. Pietro De Giovanni & Georges Zaccour, 2022. "A selective survey of game-theoretic models of closed-loop supply chains," Annals of Operations Research, Springer, vol. 314(1), pages 77-116, July.
    16. Huaixi Song & Quanxi Li & Kailing Liu & Yi Li, 2022. "The Recycling Strategy of Closed-Loop Supply Chain Considering CSR under the Government’s Reward–Penalty Policy," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    17. Yande Gong & Mengze Chen & Yuliang Zhuang, 2019. "Decision-Making and Performance Analysis of Closed-Loop Supply Chain under Different Recycling Modes and Channel Power Structures," Sustainability, MDPI, vol. 11(22), pages 1-26, November.
    18. Cai, Ya-Jun & Choi, Tsan-Ming & Zhang, Ting, 2022. "Commercial used apparel collection operations in retail supply chains," European Journal of Operational Research, Elsevier, vol. 298(1), pages 169-181.
    19. Peng Xing & Xiangru Zhao & Mingxing Wang, 2022. "The Optimal Combination between Recycling Channel and Logistics Service Outsourcing in a Closed-Loop Supply Chain Considering Consumers’ Environmental Awareness," Sustainability, MDPI, vol. 14(24), pages 1-25, December.
    20. Junsong Bian & Xiaolong Guo, 2022. "Policy analysis for emission-reduction with green technology investment in manufacturing," Annals of Operations Research, Springer, vol. 316(1), pages 5-32, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:20:p:9035-:d:1501803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.