IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i20p8929-d1499336.html
   My bibliography  Save this article

Carbon Footprint Optimization with Data Resolution Conversion via Kalman Filter for Smart Energy Hub

Author

Listed:
  • Mohammed Mahmoud Khattab

    (Research and Innovation Center, Arab Academy for Science, Technology and Maritime Transport, Alex 21937, Egypt)

  • Ahmed Abdelrahim

    (Electrical and Control Department, Arab Academy for Science, Technology and Maritime Transport, Alex 21937, Egypt)

  • Eman Youssef

    (Marine Engineering Technology Department, Arab Academy for Science and Technology, Alex 21937, Egypt)

  • Mostafa Saad Hamad

    (Research and Innovation Center, Arab Academy for Science, Technology and Maritime Transport, Alex 21937, Egypt)

  • Rania A. Elmanfaloty

    (Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

Abstract

The severe climate changes due to global warming pushed the world to strive to reduce carbon emissions. And transitioning to renewable energy sources is essential for achieving sustainability and combating climate change. This study aims to minimize the carbon emissions for a proposed smart energy hub. This paper prioritizes the minimization of carbon emissions, considering the minimization of operational running costs, and the maximization of profit. In this paper, two optimization scenarios were studied to compare the results. In the first scenario, the minimization of carbon emissions was achieved. In the second scenario, the minimization of running costs and the maximization of profit from the hub assets were studied. The proposed model was designed in MATLAB. Then, the results were verified by CPLEX and validated by RTDS. The multi-objective model was presented to obtain the optimal operation. The mitigation of data uncertainty was achieved by applying the Kalman filter. In this work, a novel method was proposed for the estimation of the quarter-hour resolution data from the hourly ones via the Kalman filter rather than by applying the classic polynomial interpolation methods.

Suggested Citation

  • Mohammed Mahmoud Khattab & Ahmed Abdelrahim & Eman Youssef & Mostafa Saad Hamad & Rania A. Elmanfaloty, 2024. "Carbon Footprint Optimization with Data Resolution Conversion via Kalman Filter for Smart Energy Hub," Sustainability, MDPI, vol. 16(20), pages 1-18, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:20:p:8929-:d:1499336
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/20/8929/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/20/8929/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bashiri Khouzestani, Leyla & Sheikh-El-Eslami, Mohammad Kazem & Salemi, Amir Hosein & Gerami Moghaddam, Iman, 2023. "Virtual smart energy Hub: A powerful tool for integrated multi energy systems operation," Energy, Elsevier, vol. 265(C).
    2. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
    3. Lu, Xinhui & Liu, Zhaoxi & Ma, Li & Wang, Lingfeng & Zhou, Kaile & Feng, Nanping, 2020. "A robust optimization approach for optimal load dispatch of community energy hub," Applied Energy, Elsevier, vol. 259(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Liu, Tianhao & Tian, Jun & Zhu, Hongyu & Goh, Hui Hwang & Liu, Hui & Wu, Thomas & Zhang, Dongdong, 2023. "Key technologies and developments of multi-energy system: Three-layer framework, modelling and optimisation," Energy, Elsevier, vol. 277(C).
    3. Emrani-Rahaghi, Pouria & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2023. "Efficient voltage control of low voltage distribution networks using integrated optimized energy management of networked residential multi-energy microgrids," Applied Energy, Elsevier, vol. 349(C).
    4. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    5. Paulo M. De Oliveira-De Jesus & Jose M. Yusta, 2024. "Optimal Power Dispatch for Maximum Energy Community Welfare by Considering Closed Distribution Systems and Renewable Sources," Energies, MDPI, vol. 17(18), pages 1-21, September.
    6. Chankook Park & Wan Gyu Heo & Myung Eun Lee, 2024. "Study on Consumers’ Perceived Benefits and Risks of Smart Energy System," International Journal of Energy Economics and Policy, Econjournals, vol. 14(3), pages 288-300, May.
    7. Mansour-Saatloo, Amin & Pezhmani, Yasin & Mirzaei, Mohammad Amin & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Marzband, Mousa & Anvari-Moghaddam, Amjad, 2021. "Robust decentralized optimization of Multi-Microgrids integrated with Power-to-X technologies," Applied Energy, Elsevier, vol. 304(C).
    8. Navid Shirzadi & Hadise Rasoulian & Fuzhan Nasiri & Ursula Eicker, 2022. "Resilience Enhancement of an Urban Microgrid during Off-Grid Mode Operation Using Critical Load Indicators," Energies, MDPI, vol. 15(20), pages 1-15, October.
    9. Yang, Ting & Zhao, Liyuan & Li, Wei & Zomaya, Albert Y., 2021. "Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning," Energy, Elsevier, vol. 235(C).
    10. Wang, Jianxiao & An, Qi & Zhao, Yue & Pan, Guangsheng & Song, Jie & Hu, Qinran & Tan, Chin-Woo, 2023. "Role of electrolytic hydrogen in smart city decarbonization in China," Applied Energy, Elsevier, vol. 336(C).
    11. Wang, Yubin & Dong, Wei & Yang, Qiang, 2022. "Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets," Applied Energy, Elsevier, vol. 310(C).
    12. Pinto, Giuseppe & Piscitelli, Marco Savino & Vázquez-Canteli, José Ramón & Nagy, Zoltán & Capozzoli, Alfonso, 2021. "Coordinated energy management for a cluster of buildings through deep reinforcement learning," Energy, Elsevier, vol. 229(C).
    13. Zhao, Guanjia & Cui, Zhipeng & Xu, Jing & Liu, Wenhao & Ma, Suxia, 2022. "Hybrid modeling-based digital twin for performance optimization with flexible operation in the direct air-cooling power unit," Energy, Elsevier, vol. 254(PC).
    14. Najafi, Arsalan & Jasiński, Michał & Leonowicz, Zbigniew, 2022. "A hybrid distributed framework for optimal coordination of electric vehicle aggregators problem," Energy, Elsevier, vol. 249(C).
    15. Tang, Bao-Jun & Cao, Xi-Lin & Li, Ru & Xiang, Zhi-Bo & Zhang, Sen, 2024. "Economic and low-carbon planning for interconnected integrated energy systems considering emerging technologies and future development trends," Energy, Elsevier, vol. 302(C).
    16. Alizadeh, Ali & Kamwa, Innocent & Moeini, Ali & Mohseni-Bonab, Seyed Masoud, 2023. "Energy management in microgrids using transactive energy control concept under high penetration of Renewables; A survey and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    17. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    18. Seyfi, Mohammad & Mehdinejad, Mehdi & Mohammadi-Ivatloo, Behnam & Shayanfar, Heidarali, 2022. "Deep learning-based scheduling of virtual energy hubs with plug-in hybrid compressed natural gas-electric vehicles," Applied Energy, Elsevier, vol. 321(C).
    19. Li, Jinchao & Sun, Zihao & Niu, Xiaoxuan & Li, Shiwei, 2024. "Economic optimization scheduling of virtual power plants considering an incentive based tiered carbon price," Energy, Elsevier, vol. 305(C).
    20. Cerna, Fernando V. & Pourakbari-Kasmaei, Mahdi & Barros, Raone G. & Naderi, Ehsan & Lehtonen, Matti & Contreras, Javier, 2023. "Optimal operating scheme of neighborhood energy storage communities to improve power grid performance in smart cities," Applied Energy, Elsevier, vol. 331(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:20:p:8929-:d:1499336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.