IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i20p8849-d1497412.html
   My bibliography  Save this article

Modeling and Analysis of Public Transport Network in Hohhot Based on Complex Network

Author

Listed:
  • Hong Zhang

    (Transportation Institute, Inner Mongolia University, Hohhot 010070, China
    Inner Mongolia Engineering Research Center for Intelligent Transportation Equipment, Hohhot 010070, China)

  • Lu Lu

    (Transportation Institute, Inner Mongolia University, Hohhot 010070, China)

Abstract

In the urban public transport network, the transfer of buses and subways provides convenience for residents to travel efficiently. But in actual operation, it is found that accidents, natural disasters, and other damage are inevitable. These sudden events may lead to route suspensions and service delays, ultimately resulting in network paralysis. In this paper, complex network theory is used to construct a weighted double-layer network model. Carrying capacity is considered the edge weight. The model analyzes the impact of these sudden events on network performance. It also conducts in-depth research on network structure and node importance. A collective influence (CI) algorithm is proposed as a centrality index to evaluate node importance. Based on the dynamic nature of the attacks, the network state is divided into initial network and current network. Taking Hohhot as an example, the results show that the network based on a CI algorithm node attack has the worst invulnerability. The network invulnerability based on an edge weight attack is better than that of edge betweenness. Compared with the current network, the invulnerability of the initial network is stronger. This indicates that ongoing changes and adaptations in the network may accelerate the decline in overall performance. At the same time, targeted interventions on key nodes and edges can enhance the network’s invulnerability. Planners can continuously monitor network performance to provide a basis for dynamic management and real-time adjustments. Additionally, effective information about critical routes to the public helps ensure the sustainable operation of the public transportation network.

Suggested Citation

  • Hong Zhang & Lu Lu, 2024. "Modeling and Analysis of Public Transport Network in Hohhot Based on Complex Network," Sustainability, MDPI, vol. 16(20), pages 1-15, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:20:p:8849-:d:1497412
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/20/8849/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/20/8849/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Flaviano Morone & Hernán A. Makse, 2015. "Correction: Corrigendum: Influence maximization in complex networks through optimal percolation," Nature, Nature, vol. 527(7579), pages 544-544, November.
    2. Ting Chen & Jianxiao Ma & Zhenjun Zhu & Xiucheng Guo, 2023. "Evaluation Method for Node Importance of Urban Rail Network Considering Traffic Characteristics," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    3. Si-Jia Zhang & Shun-Ping Jia & Yun Bai & Bao-Hua Mao & Cun-Rui Ma & Tong Zhang, 2018. "Optimal Adjustment Schemes on the Long Through-Type Bus Lines considering the Urban Rail Transit Network," Discrete Dynamics in Nature and Society, Hindawi, vol. 2018, pages 1-15, September.
    4. Ding, Rui & Ujang, Norsidah & Hamid, Hussain bin & Manan, Mohd Shahrudin Abd & Li, Rong & Wu, Jianjun, 2017. "Heuristic urban transportation network design method, a multilayer coevolution approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 71-83.
    5. Wenju Du & Jiangang Zhang & Yinzhen Li & Shuang Qin, 2016. "Synchronization between Different Networks with Time-Varying Delay and Its Application in Bilayer Coupled Public Traffic Network," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-11, May.
    6. Flaviano Morone & Hernán A. Makse, 2015. "Influence maximization in complex networks through optimal percolation," Nature, Nature, vol. 524(7563), pages 65-68, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pu, Han & Li, Yinzhen & Ma, Changxi, 2022. "Topology analysis of Lanzhou public transport network based on double-layer complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    2. Xinyu Huang & Dongming Chen & Dongqi Wang & Tao Ren, 2020. "MINE: Identifying Top- k Vital Nodes in Complex Networks via Maximum Influential Neighbors Expansion," Mathematics, MDPI, vol. 8(9), pages 1-25, August.
    3. Fink, Christian G. & Fullin, Kelly & Gutierrez, Guillermo & Omodt, Nathan & Zinnecker, Sydney & Sprint, Gina & McCulloch, Sean, 2023. "A centrality measure for quantifying spread on weighted, directed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    4. Fan, Dongming & Sun, Bo & Dui, Hongyan & Zhong, Jilong & Wang, Ziyao & Ren, Yi & Wang, Zili, 2022. "A modified connectivity link addition strategy to improve the resilience of multiplex networks against attacks," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    5. Wang, Jingjing & Xu, Shuqi & Mariani, Manuel S. & Lü, Linyuan, 2021. "The local structure of citation networks uncovers expert-selected milestone papers," Journal of Informetrics, Elsevier, vol. 15(4).
    6. Gangwal, Utkarsh & Singh, Mayank & Pandey, Pradumn Kumar & Kamboj, Deepak & Chatterjee, Samrat & Bhatia, Udit, 2022. "Identifying early-warning indicators of onset of sudden collapse in networked infrastructure systems against sequential disruptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    7. Wandelt, Sebastian & Sun, Xiaoqian & Zhang, Anming, 2023. "Towards analyzing the robustness of the Integrated Global Transportation Network Abstraction (IGTNA)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    8. Yin, Haofei & Zhang, Aobo & Zeng, An, 2023. "Identifying hidden target nodes for spreading in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    9. Qi, Mingze & Tan, Suoyi & Chen, Peng & Duan, Xiaojun & Lu, Xin, 2023. "Efficient network intervention with sampling information," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    10. Zhang, Renquan & Wei, Ting & Sun, Yifan & Pei, Sen, 2024. "Influence maximization based on simplicial contagion models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 645(C).
    11. Ping Pei & Haihan Zhang & Huizhen Zhang & Chen Yang & Tianbo An, 2024. "Network Synchronization via Pinning Control from an Attacker-Defender Game Perspective," Mathematics, MDPI, vol. 12(12), pages 1-17, June.
    12. Li, Sheng & Liu, Wenwen & Wu, Ruizi & Li, Junli, 2023. "An adaptive attack model to network controllability," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    13. James Flamino & Alessandro Galeazzi & Stuart Feldman & Michael W. Macy & Brendan Cross & Zhenkun Zhou & Matteo Serafino & Alexandre Bovet & Hernán A. Makse & Boleslaw K. Szymanski, 2023. "Political polarization of news media and influencers on Twitter in the 2016 and 2020 US presidential elections," Nature Human Behaviour, Nature, vol. 7(6), pages 904-916, June.
    14. Xie, Zheng & Lv, Yiqin & Song, Yiping & Wang, Qi, 2024. "Data labeling through the centralities of co-reference networks improves the classification accuracy of scientific papers," Journal of Informetrics, Elsevier, vol. 18(2).
    15. Li Zeng & Changjun Fan & Chao Chen, 2023. "Leveraging Minimum Nodes for Optimum Key Player Identification in Complex Networks: A Deep Reinforcement Learning Strategy with Structured Reward Shaping," Mathematics, MDPI, vol. 11(17), pages 1-13, August.
    16. Jiang, Wenjun & Fan, Tianlong & Li, Changhao & Zhang, Chuanfu & Zhang, Tao & Luo, Zong-fu, 2024. "Comprehensive analysis of network robustness evaluation based on convolutional neural networks with spatial pyramid pooling," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    17. Almeira, Nahuel & Perotti, Juan Ignacio & Chacoma, Andrés & Billoni, Orlando Vito, 2021. "Explosive dismantling of two-dimensional random lattices under betweenness centrality attacks," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    18. Tianle Pu & Li Zeng & Chao Chen, 2024. "Deep Reinforcement Learning for Network Dismantling: A K-Core Based Approach," Mathematics, MDPI, vol. 12(8), pages 1-12, April.
    19. Wu, Rui-Jie & Kong, Yi-Xiu & Di, Zengru & Zhang, Yi-Cheng & Shi, Gui-Yuan, 2022. "Analytical solution to the k-core pruning process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    20. Wandelt, Sebastian & Lin, Wei & Sun, Xiaoqian & Zanin, Massimiliano, 2022. "From random failures to targeted attacks in network dismantling," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:20:p:8849-:d:1497412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.