IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i20p8757-d1495879.html
   My bibliography  Save this article

Sustainable Modernization of Wastewater Treatment Plants

Author

Listed:
  • Nikolay Makisha

    (Research and Education Centre “Water Supply and Wastewater Treatment”, Moscow State University of Civil Engineering, 26, Yaroslaskoye Highway, 129337 Moscow, Russia)

  • Igor Gulshin

    (Research and Education Centre “Water Supply and Wastewater Treatment”, Moscow State University of Civil Engineering, 26, Yaroslaskoye Highway, 129337 Moscow, Russia)

Abstract

This analytical study was conducted on the basis of statistical data from the Russian Federation and technological requirements for WWTP operation. As a case study, a virtual WWTP, which serves a residential area of 31,500 PE (personal equivalent), was considered to solve a task of their potential upgrade. According to the initial data, within modernization, the existing infrastructure of the WWTP should be considered in order to receive wastewater with a reduced flow rate and increased values of pollutant concentrations. Within the analysis, treatment efficiency should correspond to current regulations. Special focus was put on secondary treatment facilities, as they ensure the removal of major contaminants (organic pollution) and nutrients (nitrogen and phosphorus). The results showed that even in the case of a lower flow rate, higher pollutant concentrations demanded a doubled volume of activated sludge reactor to provide the required efficiency. An increase in oxidizing capacity may be ensured through the growth of mixed liquor suspended solids (MLSS) value with simultaneous transition from gravity to membrane sludge separation. A study revealed that an MLSS raised from 3 to 8 g/L allows treatment in the existing tanks to be performed with necessary efficiency. In this case, significant costs for the purchase of membranes are offset by the need for zero additional construction. On the other hand, such a transition leads to an increase in operating costs of 60% (from EUR 0.078 to EUR 0.12/(m 3 /d)).

Suggested Citation

  • Nikolay Makisha & Igor Gulshin, 2024. "Sustainable Modernization of Wastewater Treatment Plants," Sustainability, MDPI, vol. 16(20), pages 1-18, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:20:p:8757-:d:1495879
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/20/8757/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/20/8757/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Junwen & Chen, Bin, 2021. "Energy efficiency evaluation of wastewater treatment plants (WWTPs) based on data envelopment analysis," Applied Energy, Elsevier, vol. 289(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Sihua & Yang, Haidong & Xu, Kangkang & Zhu, Chengjiu & Zhang, Shaqing & Liu, Guosheng, 2022. "Dynamic real–time abnormal energy consumption detection and energy efficiency optimization analysis considering uncertainty," Applied Energy, Elsevier, vol. 307(C).
    2. Salman, Muhammad & Long, Xingle & Wang, Guimei & Zha, Donglan, 2022. "Paris climate agreement and global environmental efficiency: New evidence from fuzzy regression discontinuity design," Energy Policy, Elsevier, vol. 168(C).
    3. Zhu, Wenjing & Duan, Cuncun & Chen, Bin, 2024. "Energy efficiency assessment of wastewater treatment plants in China based on multiregional input–output analysis and data envelopment analysis," Applied Energy, Elsevier, vol. 356(C).
    4. Esra Kalya & Alper Alver, 2023. "Determining the contribution of the wastewater treatment plant to the sustainable environment with water footprint indicators," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12999-13014, November.
    5. Chen, Xin & Zhou, Wenjia, 2022. "Economic and ecological assessment of photovoltaic systems for wastewater treatment plants in China," Renewable Energy, Elsevier, vol. 191(C), pages 852-867.
    6. Al-Dahidi, Sameer & Alrbai, Mohammad & Al-Ghussain, Loiy & Alahmer, Ali, 2024. "Maximizing energy efficiency in wastewater treatment plants: A data-driven approach for waste heat recovery and an economic analysis using Organic Rankine Cycle and thermal energy storage," Applied Energy, Elsevier, vol. 362(C).
    7. Wen-Jing Song & Jian-Wei Ren & Chun-Hua Chen & Chen-Xi Feng & Lin-Qiang Li & Chong-Yu Ma, 2024. "A Two-Stage Data Envelopment Analysis Approach Incorporating the Global Bounded Adjustment Measure to Evaluate the Efficiency of Medical Waste Recycling Systems with Undesirable Inputs and Outputs," Sustainability, MDPI, vol. 16(10), pages 1-29, May.
    8. Ewelina Płuciennik-Koropczuk & Sylwia Myszograj & Mirosław Mąkowski, 2022. "Reducing CO 2 Emissions from Wastewater Treatment Plants by Utilising Renewable Energy Sources—Case Study," Energies, MDPI, vol. 15(22), pages 1-14, November.
    9. Sylwia Myszograj & Dariusz Bocheński & Mirosław Mąkowski & Ewelina Płuciennik-Koropczuk, 2021. "Biogas, Solar and Geothermal Energy—The Way to a Net-Zero Energy Wastewater Treatment Plant—A Case Study," Energies, MDPI, vol. 14(21), pages 1-15, October.
    10. Huang, Runyao & Shen, Ziheng & Wang, Hongtao & Xu, Jin & Ai, Zisheng & Zheng, Hongyuan & Liu, Runxi, 2021. "Evaluating the energy efficiency of wastewater treatment plants in the Yangtze River Delta: Perspectives on regional discrepancies," Applied Energy, Elsevier, vol. 297(C).
    11. Castro, J.S. & Ferreira, J. & Magalhães, I.B. & Jesus Junior, M.M. & Marangon, B.B. & Pereira, A.S.A.P. & Lorentz, J.F. & Gama, R.C.N. & Rodrigues, F.A. & Calijuri, M.L., 2023. "Life cycle assessment and techno-economic analysis for biofuel and biofertilizer recovery as by-products from microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    12. Liu, Runxi & Huang, Runyao & Shen, Ziheng & Wang, Hongtao & Xu, Jin, 2021. "Optimizing the recovery pathway of a net-zero energy wastewater treatment model by balancing energy recovery and eco-efficiency," Applied Energy, Elsevier, vol. 298(C).
    13. Liu, Lingchi & Zhang, Xiaohong & Lyu, Yanfeng, 2022. "Performance comparison of sewage treatment plants before and after their upgradation using emergy evaluation combined with economic analysis: A case from Southwest China," Ecological Modelling, Elsevier, vol. 472(C).
    14. Junghyun Park & Jae Leame Yoo & Jongsik Yu, 2021. "Effect of Hotel Air Quality Management on Guests’ Cognitive and Affective Images and Revisit Intentions," IJERPH, MDPI, vol. 18(17), pages 1-13, September.
    15. Xiong, Yu-Tong & Zhang, Jing & Chen, You-Peng & Guo, Jin-Song & Fang, Fang & Yan, Peng, 2021. "Geographic distribution of net-zero energy wastewater treatment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    16. Lin, Chihao & Xiao, Xiangmin & Li, Yu-You & Liu, Jianyong, 2023. "Evaluation of the economic and environmental benefits of partial nitritation anammox and partial denitrification anammox coupling preliminary treatment in mainstream wastewater treatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:20:p:8757-:d:1495879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.