IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i18p8138-d1480290.html
   My bibliography  Save this article

The Use of Energy Simulations in Residential Design: A Systematic Literature Review

Author

Listed:
  • Mert Sercan Sağdıçoğlu

    (Department of Architecture, Hasan Kalyoncu University, 27010 Gaziantep, Turkey)

  • M. Serhat Yenice

    (Department of Interior Architecture and Environmental Design, Hasan Kalyoncu University, 27010 Gaziantep, Turkey)

  • M. Zübeyr Tel

    (Department of Architecture, Hasan Kalyoncu University, 27010 Gaziantep, Turkey)

Abstract

The Industrial Revolution and technological advancements have led to the densification and expansion of cities. In urban environments, residential buildings are common, and optimizing energy use in these structures is achieved by focusing on key parameters during the early design phases. These parameters can be tested through simulations. This study aims to define the scope of energy simulations in residential design to contribute to design optimization and reduce energy consumption. A systematic literature review and qualitative analysis were employed, using the PRISMA protocol for data collection and Vosviewer and Bibliometrix tools for bibliometric analysis. The keywords obtained were subjected to qualitative analysis. The research revealed the absence of a standardized approach in simulation studies. To address this, a nine-step framework has been proposed. A discrepancy between the objectives of certain studies and the keywords used was identified. Themes were created based on the studies’ objectives, and keywords were recommended accordingly. Several studies have determined the energy potential of buildings during the occupancy phase. Simulations should be integrated into the early design phase to facilitate pre-design optimization. A framework for residential simulation methodology was developed, believed to enhance the validity of studies and facilitate result comparisons. Minimizing energy consumption is a primary objective in residential buildings. The recommendations developed align with the United Nations’ Sustainable Development Goal 11: Sustainable Cities and Communities.

Suggested Citation

  • Mert Sercan Sağdıçoğlu & M. Serhat Yenice & M. Zübeyr Tel, 2024. "The Use of Energy Simulations in Residential Design: A Systematic Literature Review," Sustainability, MDPI, vol. 16(18), pages 1-27, September.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:18:p:8138-:d:1480290
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/18/8138/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/18/8138/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fu-Wing Yu & Wai-Tung Ho, 2023. "Time Series Forecast of Cooling Demand for Sustainable Chiller System in an Office Building in a Subtropical Climate," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    2. Nguyen, Anh-Tuan & Reiter, Sigrid & Rigo, Philippe, 2014. "A review on simulation-based optimization methods applied to building performance analysis," Applied Energy, Elsevier, vol. 113(C), pages 1043-1058.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benedek Kiss & Jose Dinis Silvestre & Rita Andrade Santos & Zsuzsa Szalay, 2021. "Environmental and Economic Optimisation of Buildings in Portugal and Hungary," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    2. Guariso, Giorgio & Sangiorgio, Matteo, 2019. "Multi-objective planning of building stock renovation," Energy Policy, Elsevier, vol. 130(C), pages 101-110.
    3. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    4. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    5. Kokaraki, Nikoleta & Hopfe, Christina J. & Robinson, Elaine & Nikolaidou, Elli, 2019. "Testing the reliability of deterministic multi-criteria decision-making methods using building performance simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 991-1007.
    6. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    7. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    8. Fernandes, Marco S. & Rodrigues, Eugénio & Gaspar, Adélio Rodrigues & Costa, José J. & Gomes, Álvaro, 2019. "The impact of thermal transmittance variation on building design in the Mediterranean region," Applied Energy, Elsevier, vol. 239(C), pages 581-597.
    9. Niemelä, Tuomo & Kosonen, Risto & Jokisalo, Juha, 2016. "Cost-optimal energy performance renovation measures of educational buildings in cold climate," Applied Energy, Elsevier, vol. 183(C), pages 1005-1020.
    10. Eva Lucas Segarra & Germán Ramos Ruiz & Vicente Gutiérrez González & Antonis Peppas & Carlos Fernández Bandera, 2020. "Impact Assessment for Building Energy Models Using Observed vs. Third-Party Weather Data Sets," Sustainability, MDPI, vol. 12(17), pages 1-27, August.
    11. Tatchell-Evans, Morgan & Kapur, Nik & Summers, Jonathan & Thompson, Harvey & Oldham, Dan, 2017. "An experimental and theoretical investigation of the extent of bypass air within data centres employing aisle containment, and its impact on power consumption," Applied Energy, Elsevier, vol. 186(P3), pages 457-469.
    12. Lin, Yu-Hao & Tsai, Kang-Ting & Lin, Min-Der & Yang, Ming-Der, 2016. "Design optimization of office building envelope configurations for energy conservation," Applied Energy, Elsevier, vol. 171(C), pages 336-346.
    13. Shadram, Farshid & Bhattacharjee, Shimantika & Lidelöw, Sofia & Mukkavaara, Jani & Olofsson, Thomas, 2020. "Exploring the trade-off in life cycle energy of building retrofit through optimization," Applied Energy, Elsevier, vol. 269(C).
    14. Østergård, Torben & Jensen, Rasmus Lund & Maagaard, Steffen Enersen, 2018. "A comparison of six metamodeling techniques applied to building performance simulations," Applied Energy, Elsevier, vol. 211(C), pages 89-103.
    15. Bingham, Raymond D. & Agelin-Chaab, Martin & Rosen, Marc A., 2019. "Whole building optimization of a residential home with PV and battery storage in The Bahamas," Renewable Energy, Elsevier, vol. 132(C), pages 1088-1103.
    16. García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul & Morillón Gálvez, David, 2017. "A comparison of an energy/economic-based against an exergoeconomic-based multi-objective optimisation for low carbon building energy design," Energy, Elsevier, vol. 128(C), pages 244-263.
    17. Cristina Brunelli & Francesco Castellani & Alberto Garinei & Lorenzo Biondi & Marcello Marconi, 2016. "A Procedure to Perform Multi-Objective Optimization for Sustainable Design of Buildings," Energies, MDPI, vol. 9(11), pages 1-15, November.
    18. Nayara R. M. Sakiyama & Joyce C. Carlo & Leonardo Mazzaferro & Harald Garrecht, 2021. "Building Optimization through a Parametric Design Platform: Using Sensitivity Analysis to Improve a Radial-Based Algorithm Performance," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    19. Alaia Sola & Cristina Corchero & Jaume Salom & Manel Sanmarti, 2018. "Simulation Tools to Build Urban-Scale Energy Models: A Review," Energies, MDPI, vol. 11(12), pages 1-24, November.
    20. George M. Stavrakakis & Dimitris Al. Katsaprakakis & Markos Damasiotis, 2021. "Basic Principles, Most Common Computational Tools, and Capabilities for Building Energy and Urban Microclimate Simulations," Energies, MDPI, vol. 14(20), pages 1-41, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:18:p:8138-:d:1480290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.