IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i18p8107-d1479529.html
   My bibliography  Save this article

Mechanism of Carbon Monoxide (CO) Generation and Potential Human Health Hazard during Mechanized Tunnel Driving in Organic-Rich Rocks: Field and Laboratory Study

Author

Listed:
  • Andre Baldermann

    (Institute of Applied Geosciences, Graz University of Technology and NAWI Graz Geocenter, Rechbauerstraße 12, 8010 Graz, Austria)

  • Ronny Boch

    (Institute of Applied Geosciences, Graz University of Technology and NAWI Graz Geocenter, Rechbauerstraße 12, 8010 Graz, Austria
    Department of Geology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria)

  • Volker Reinprecht

    (Institute of Applied Geosciences, Graz University of Technology and NAWI Graz Geocenter, Rechbauerstraße 12, 8010 Graz, Austria)

  • Claudia Baldermann

    (Institute of Technology and Testing of Building Materials (IMBT-TVFA), Graz University of Technology, Inffeldgasse 24, 8010 Graz, Austria)

Abstract

The monitoring of carbon emissions is increasingly becoming a sustainability issue worldwide. Despite being largely unnoticed, the toxic gas carbon monoxide (CO) is ubiquitous in mechanized tunnel driving, but the individual sources, release and enrichment mechanisms are often unknown. In this study, the generation of CO from organic matter containing sedimentary rocks was investigated during mechanized tunnel driving and by reacting claystone and sandstone with 10 mM NaCl solutions for 2 months at 70 °C and 140 °C. The mineralogical and geochemical evolution of the solids and fluids was assessed by CO measurements and the XRD, DTA, TOC, IC and ICP-OES methods. The CO concentration in the atmosphere reached up to 1920 ppm (100 ppm on average) during tunnel driving, which is more than three times higher than the legal daily average dose for tunnellers, thus requiring occupational safety operations. Mineral-specific dissolution processes and the rapid decomposition of labile organic matter upon thermal alteration contributed to the liberation of CO and also carbon dioxide (CO 2 ) from the host rocks. In mechanized tunnel driving, frictional heat and ‘cold’ combustion with temperatures reaching 50–70 °C at the drill head is an important mechanism for increased CO and CO 2 generation, especially during drilling in sedimentary rocks containing significant amounts of OM and when the ventilation of the tunnel atmosphere and air mixing are limited. Under such conditions, human health damage due to CO exposure (HHD CO ) can be 30 times higher compared to tunnel outlets, where CO is emitted from traffic.

Suggested Citation

  • Andre Baldermann & Ronny Boch & Volker Reinprecht & Claudia Baldermann, 2024. "Mechanism of Carbon Monoxide (CO) Generation and Potential Human Health Hazard during Mechanized Tunnel Driving in Organic-Rich Rocks: Field and Laboratory Study," Sustainability, MDPI, vol. 16(18), pages 1-17, September.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:18:p:8107-:d:1479529
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/18/8107/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/18/8107/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pierre Regnier & Laure Resplandy & Raymond G. Najjar & Philippe Ciais, 2022. "The land-to-ocean loops of the global carbon cycle," Nature, Nature, vol. 603(7901), pages 401-410, March.
    2. Dennis A. Hansell & Craig A. Carlson, 1998. "Deep-ocean gradients in the concentration of dissolved organic carbon," Nature, Nature, vol. 395(6699), pages 263-266, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zigao He, 2023. "The Water–Energy–Carbon Coupling Coordination Level in China," Sustainability, MDPI, vol. 16(1), pages 1-15, December.
    2. Chao Yue & Mengyang Xu & Philippe Ciais & Shu Tao & Huizhong Shen & Jinfeng Chang & Wei Li & Lei Deng & Junhao He & Yi Leng & Yu Li & Jiaming Wang & Can Xu & Han Zhang & Pengyi Zhang & Liankai Zhang &, 2024. "Contributions of ecological restoration policies to China’s land carbon balance," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Dong Liu & Kun Shi & Peng Chen & Nuoxiao Yan & Lishan Ran & Tiit Kutser & Andrew N. Tyler & Evangelos Spyrakos & R. Iestyn Woolway & Yunlin Zhang & Hongtao Duan, 2024. "Substantial increase of organic carbon storage in Chinese lakes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Shanshan Song & Yali Ding & Wei Li & Yuchen Meng & Jian Zhou & Ruikun Gou & Conghe Zhang & Shengbin Ye & Neil Saintilan & Ken W. Krauss & Stephen Crooks & Shuguo Lv & Guanghui Lin, 2023. "Mangrove reforestation provides greater blue carbon benefit than afforestation for mitigating global climate change," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Núria Catalán & Carina Rofner & Charles Verpoorter & María Teresa Pérez & Thorsten Dittmar & Lars Tranvik & Ruben Sommaruga & Hannes Peter, 2024. "Treeline displacement may affect lake dissolved organic matter processing at high latitudes and altitudes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Wenjie Xiao & Yunping Xu & Donald E. Canfield & Frank Wenzhöfer & Chuanlun Zhang & Ronnie N. Glud, 2024. "Strong linkage between benthic oxygen uptake and bacterial tetraether lipids in deep-sea trench regions," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Ina M. Deutschmann & Erwan Delage & Caterina R. Giner & Marta Sebastián & Julie Poulain & Javier Arístegui & Carlos M. Duarte & Silvia G. Acinas & Ramon Massana & Josep M. Gasol & Damien Eveillard & S, 2024. "Disentangling microbial networks across pelagic zones in the tropical and subtropical global ocean," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    8. Joan P. Casas-Ruiz & Pascal Bodmer & Kelly Ann Bona & David Butman & Mathilde Couturier & Erik J. S. Emilson & Kerri Finlay & Hélène Genet & Daniel Hayes & Jan Karlsson & David Paré & Changhui Peng & , 2023. "Integrating terrestrial and aquatic ecosystems to constrain estimates of land-atmosphere carbon exchange," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    9. Nicolas Mayot & Erik T. Buitenhuis & Rebecca M. Wright & Judith Hauck & Dorothee C. E. Bakker & Corinne Le Quéré, 2024. "Constraining the trend in the ocean CO2 sink during 2000–2022," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Charissa M. Ferrera & Gil S. Jacinto & Chen-Tung Arthur Chen & Hon-Kit Lui, 2018. "Organic Carbon Concentrations in High- and Low-Productivity Areas of the Sulu Sea," Sustainability, MDPI, vol. 10(6), pages 1-19, June.
    11. Peng Zhou & Long Tian & Nigel Graham & Shian Song & Renzun Zhao & Muhammad Saboor Siddique & Ying Hu & Xianyong Cao & Yonglong Lu & Menachem Elimelech & Wenzheng Yu, 2024. "Spatial patterns and environmental functions of dissolved organic matter in grassland soils of China," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Qian Fang & Anhuai Lu & Hanlie Hong & Yakov Kuzyakov & Thomas J. Algeo & Lulu Zhao & Yaniv Olshansky & Bryan Moravec & Danielle M. Barrientes & Jon Chorover, 2023. "Mineral weathering is linked to microbial priming in the critical zone," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Jacob Z.-Q. Yeo & Judith A. Rosentreter & Joanne M. Oakes & Kai G. Schulz & Bradley D. Eyre, 2024. "High carbon dioxide emissions from Australian estuaries driven by geomorphology and climate," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:18:p:8107-:d:1479529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.