IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i18p8021-d1477621.html
   My bibliography  Save this article

Land Cover and Spatial Distribution of Surface Water Loss Hotspots in Italy

Author

Listed:
  • Irene Palazzoli

    (Department of Civil, Chemical, Environmental, and Materials Engineering, Alma Mater Studiorum Università di Bologna, 40136 Bologna, Italy)

  • Gianluca Lelli

    (Department of Civil, Chemical, Environmental, and Materials Engineering, Alma Mater Studiorum Università di Bologna, 40136 Bologna, Italy)

  • Serena Ceola

    (Department of Civil, Chemical, Environmental, and Materials Engineering, Alma Mater Studiorum Università di Bologna, 40136 Bologna, Italy)

Abstract

Increasing water withdrawals and changes in land cover/use are critically altering surface water bodies, often causing a noticeable reduction in their area. Such anthropogenic modification of surface waters needs to be thoroughly examined to recognize the dynamics through which humans affect the loss of surface water. By leveraging remotely-sensed data and employing a distance–decay model, we investigate the loss of surface water resources that occurred in Italy between 1984 and 2021 and explore its association with land cover change and potential human pressure. In particular, we first estimate the land cover conversion across locations experiencing surface water loss. Next, we identify and analytically model the influence of irrigated and built-up areas, which heavily rely on surface waters, on the spatial distribution of surface water losses across river basin districts and river basins in Italy. Our results reveal that surface water losses are mainly located in northern Italy, where they have been primarily replaced by cropland and vegetation. As expected, we find that surface water losses tend to be more concentrated in the proximity of both irrigated and built-up areas yet showing differences in their spatial occurrence and extent. These observed spatial patterns are well captured by our analytical model, which outlines the predominant role of irrigated areas, mainly across northern Italy and Sicily, and more dominant effects of built-up areas across the Apennines and in Sardinia. By highlighting land cover patterns following the loss of surface water and evaluating the relative distribution of surface water losses with respect to areas of human pressure, our analysis provides key information that could support water management and prevent future conditions of water scarcity due to unsustainable water exploitation.

Suggested Citation

  • Irene Palazzoli & Gianluca Lelli & Serena Ceola, 2024. "Land Cover and Spatial Distribution of Surface Water Loss Hotspots in Italy," Sustainability, MDPI, vol. 16(18), pages 1-21, September.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:18:p:8021-:d:1477621
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/18/8021/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/18/8021/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tian, Xin & Dong, Jianzhi & Jin, Shuangyan & He, Hai & Yin, Hao & Chen, Xi, 2023. "Climate change impacts on regional agricultural irrigation water use in semi-arid environments," Agricultural Water Management, Elsevier, vol. 281(C).
    2. E. S. Meulen & N. B. Sutton & F. H. M. Ven & P. R. Oel & H. H. M. Rijnaarts, 2020. "Trends in Demand of Urban Surface Water Extractions and in Situ Use Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4943-4958, December.
    3. Sarah W. Cooley & Jonathan C. Ryan & Laurence C. Smith, 2021. "Human alteration of global surface water storage variability," Nature, Nature, vol. 591(7848), pages 78-81, March.
    4. Emanuele Bonamente & Sara Rinaldi & Andrea Nicolini & Franco Cotana, 2017. "National Water Footprint: Toward a Comprehensive Approach for the Evaluation of the Sustainability of Water Use in Italy," Sustainability, MDPI, vol. 9(8), pages 1-12, August.
    5. Zajac, Zuzanna & Gomez, Oscar & Gelati, Emiliano & van der Velde, Marijn & Bassu, Simona & Ceglar, Andrej & Chukaliev, Ordan & Panarello, Lorenzo & Koeble, Renate & van den Berg, Maurits & Niemeyer, S, 2022. "Estimation of spatial distribution of irrigated crop areas in Europe for large-scale modelling applications," Agricultural Water Management, Elsevier, vol. 266(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changda Liu & Jie Li & Qiuhua Tang & Jiawei Qi & Xinghua Zhou, 2022. "Classifying the Nunivak Island Coastline Using the Random Forest Integration of the Sentinel-2 and ICESat-2 Data," Land, MDPI, vol. 11(2), pages 1-15, February.
    2. Xuewen Liang & Yue Pan & Cunwu Li & Weixiong Wu & Xusheng Huang, 2023. "Evaluating the Influence of Land Use and Landscape Pattern on the Spatial Pattern of Water Quality in the Pearl River Basin," Sustainability, MDPI, vol. 15(20), pages 1-16, October.
    3. Schmitt, Rafael Jan Pablo & Rosa, Lorenzo, 2024. "Dams for hydropower and irrigation: Trends, challenges, and alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    4. Gino Sturla & Lorenzo Ciulla & Benedetto Rocchi, 2022. "Italy's Volumetric, Scarce and Social-scarce water footprint: a Hydro Economic Input-Output Analysis," Working Papers - Economics wp2022_17.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    5. Carlos Andrés Naranjo-Merino & Oscar Orlando Ortíz-Rodriguez & Raquel A. Villamizar-G, 2017. "Assessing Green and Blue Water Footprints in the Supply Chain of Cocoa Production: A Case Study in the Northeast of Colombia," Sustainability, MDPI, vol. 10(1), pages 1-9, December.
    6. Subramaniam, Vijaya & Hashim, Zulkifli & Loh, Soh Kheang & Astimar, Abdul Aziz, 2020. "Assessing water footprint for the oil palm supply chain- a cradle to gate study," Agricultural Water Management, Elsevier, vol. 237(C).
    7. Lekarkar, Katoria & Nkwasa, Albert & Villani, Lorenzo & van Griensven, Ann, 2024. "Localizing agricultural impacts of 21st century climate pathways in data scarce catchments: A case study of the Nyando catchment, Kenya," Agricultural Water Management, Elsevier, vol. 294(C).
    8. Sweta Bhattacharya & Nancy Victor & Rajeswari Chengoden & Murugan Ramalingam & Govardanan Chemmalar Selvi & Praveen Kumar Reddy Maddikunta & Praveen Kumar Donta & Schahram Dustdar & Rutvij H. Jhaveri , 2022. "Blockchain for Internet of Underwater Things: State-of-the-Art, Applications, Challenges, and Future Directions," Sustainability, MDPI, vol. 14(23), pages 1-21, November.
    9. Tongbi Tu & Lise Comte & Albert Ruhi, 2023. "The color of environmental noise in river networks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Yao Li & Gang Zhao & George H. Allen & Huilin Gao, 2023. "Diminishing storage returns of reservoir construction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Chiara Perelli & Giacomo Branca & Chiara Corbari & Marco Mancini, 2024. "Physical and Economic Water Productivity in Agriculture between Traditional and Water-Saving Irrigation Systems: A Case Study in Southern Italy," Sustainability, MDPI, vol. 16(12), pages 1-12, June.
    12. Gang Zhao & Yao Li & Liming Zhou & Huilin Gao, 2022. "Evaporative water loss of 1.42 million global lakes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Dekai Tao & Wenli Zhou, 2022. "An Evaluation and Optimization of Green Development Strategy for the Nanjing-Hangzhou Eco-Economic Zone in China," Sustainability, MDPI, vol. 14(24), pages 1-24, December.
    14. Dang, Chiheng & Zhang, Hongbo & Yao, Congcong & Mu, Dengrui & Lyu, Fengguang & Zhang, Yu & Zhang, Shuqi, 2024. "IWRAM: A hybrid model for irrigation water demand forecasting to quantify the impacts of climate change," Agricultural Water Management, Elsevier, vol. 291(C).
    15. Zhilong Zhao & Zengzeng Hu & Jun Zhou & Ruliang Kan & Wangjun Li, 2023. "Response of Two Major Lakes in the Changtang National Nature Reserve, Tibetan Plateau to Climate and Anthropogenic Changes over the Past 50 Years," Land, MDPI, vol. 12(2), pages 1-16, January.
    16. Xuehui Pi & Qiuqi Luo & Lian Feng & Yang Xu & Jing Tang & Xiuyu Liang & Enze Ma & Ran Cheng & Rasmus Fensholt & Martin Brandt & Xiaobin Cai & Luke Gibson & Junguo Liu & Chunmiao Zheng & Weifeng Li & B, 2022. "Mapping global lake dynamics reveals the emerging roles of small lakes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Ning Wang & Jingbo Yang & Zaiyong Zhang & Yong Xiao & Hanbing Wang & Jinjun He & Lingqi Yi, 2023. "Analysis of Detailed Lake Variations and Associated Hydrologic Driving Factors in a Semi-Arid Ungauged Closed Watershed," Sustainability, MDPI, vol. 15(8), pages 1-20, April.
    18. Dmytro Onopriienko & Tetiana Makarova & Hennadii Hapich & Yelizaveta Chernysh & Hynek Roubík, 2024. "Agroecological Transformation in the Salt Composition of Soil under the Phosphogypsum Influence on Irrigated Lands in Ukraine," Agriculture, MDPI, vol. 14(3), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:18:p:8021-:d:1477621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.