IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i17p7490-d1467087.html
   My bibliography  Save this article

A Dispatch Strategy for the Analysis of the Technical, Economic, and Environmental Performance of a Hybrid Renewable Energy System

Author

Listed:
  • Mehmet Ali Köprü

    (Vocational School of Technical Sciences, Bingöl University, Bingöl 12100, Türkiye)

  • Dursun Öztürk

    (Department of Electrical-Electronics Engineering, Faculty of Engineering and Architecture, Bingöl University, Bingöl 12100, Türkiye)

  • Burak Yıldırım

    (Vocational School of Technical Sciences, Bingöl University, Bingöl 12100, Türkiye)

Abstract

The use of renewable energy sources (RESs) is increasing every day to meet increasing energy demands and reduce dependence on fossil fuels. When designing hybrid renewable energy systems (HRESs), it is necessary to examine their technical, economic, and environmental feasibility. In this study, a new strategy is proposed using the HOMER Matlab Link (ML) connection for an HRES model consisting of a photovoltaic (PV) system, a wind turbine (WT), a biogas generator (BGG), and a battery storage system (BSS) designed to meet the electrical energy needs of Doğanevler village located in the rural area of Bingöl province. The data obtained as a result of the proposed strategy (PS) are compared with HOMER’s loop charging (CC) and load following (LF) optimization results. According to the PS, the optimum capacity values for the HRES components are 10 kW for WT, 10 kW for PV, 8 kW for BGG, 12 kWh for BSS, and 12 kW for the converter. According to the optimum design, 16,205 kWh of the annual energy produced was generated by PV systems, 22,927 kWh by WTs, and 22,817 kWh by BGGs. This strategy’s NPC and LCOE (Levelized Cost of Energy) values are calculated as USD 130,673.91 and USD 0.207/kWh, respectively. For the CC dispatch strategy, the NPC and LCOE values are calculated as USD 141,892.28 and USD 0.240/kWh, while for the LF dispatch strategy, these values are USD 152,456.89 and USD 0.257/kWh. The CO 2 emission value for the system using a BGG was calculated as 480 kg/year, while for the system using a DG, this value increased approximately 57 times and was calculated to be 27,709 kg/year. The results show that the PS is more economical than the other two strategies. The PS provides energy security, reduces costs, and increases environmental sustainability. Finally, a sensitivity analysis was conducted based on the availability of renewable resources, fuel cost, and inflation parameters, and the results were analyzed.

Suggested Citation

  • Mehmet Ali Köprü & Dursun Öztürk & Burak Yıldırım, 2024. "A Dispatch Strategy for the Analysis of the Technical, Economic, and Environmental Performance of a Hybrid Renewable Energy System," Sustainability, MDPI, vol. 16(17), pages 1-20, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7490-:d:1467087
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/17/7490/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/17/7490/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. George E. Halkos & Eleni-Christina Gkampoura, 2020. "Reviewing Usage, Potentials, and Limitations of Renewable Energy Sources," Energies, MDPI, vol. 13(11), pages 1-19, June.
    2. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    3. Lata-García, Juan & Jurado, Francisco & Fernández-Ramírez, Luis M. & Sánchez-Sainz, Higinio, 2018. "Optimal hydrokinetic turbine location and techno-economic analysis of a hybrid system based on photovoltaic/hydrokinetic/hydrogen/battery," Energy, Elsevier, vol. 159(C), pages 611-620.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Polimeni, Simone & Moretti, Luca & Martelli, Emanuele & Leva, Sonia & Manzolini, Giampaolo, 2023. "A novel stochastic model for flexible unit commitment of off-grid microgrids," Applied Energy, Elsevier, vol. 331(C).
    2. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.
    3. Wenxiao Chu & Maria Vicidomini & Francesco Calise & Neven Duić & Poul Alborg Østergaard & Qiuwang Wang & Maria da Graça Carvalho, 2022. "Recent Advances in Low-Carbon and Sustainable, Efficient Technology: Strategies and Applications," Energies, MDPI, vol. 15(8), pages 1-30, April.
    4. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    5. Thomas Schmitt & Tobias Rodemann & Jürgen Adamy, 2021. "The Cost of Photovoltaic Forecasting Errors in Microgrid Control with Peak Pricing," Energies, MDPI, vol. 14(9), pages 1-13, April.
    6. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    7. Genel, Salih & Durak, Halil & Durak, Emre Demirer & Güneş, Hasret & Genel, Yaşar, 2023. "Hydrothermal liquefaction of biomass with molybdenum, aluminum, cobalt metal powder catalysts and evaluation of wastewater by fungus cultivation," Renewable Energy, Elsevier, vol. 203(C), pages 20-32.
    8. Muhammad Umair Safder & Mohammad J. Sanjari & Ameer Hamza & Rasoul Garmabdari & Md. Alamgir Hossain & Junwei Lu, 2023. "Enhancing Microgrid Stability and Energy Management: Techniques, Challenges, and Future Directions," Energies, MDPI, vol. 16(18), pages 1-28, September.
    9. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    10. Halkos, George & Managi, Shunsuke, 2023. "New developments in the disciplines of environmental and resource economics," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 513-522.
    11. Ahmed Hussain Elmetwaly & Ramy Adel Younis & Abdelazeem Abdallah Abdelsalam & Ahmed Ibrahim Omar & Mohamed Metwally Mahmoud & Faisal Alsaif & Adel El-Shahat & Mohamed Attya Saad, 2023. "Modeling, Simulation, and Experimental Validation of a Novel MPPT for Hybrid Renewable Sources Integrated with UPQC: An Application of Jellyfish Search Optimizer," Sustainability, MDPI, vol. 15(6), pages 1-30, March.
    12. Qianwen Li & Zhilong Chen & Jialin Min & Mengjie Xu & Yanhong Zhan & Wenyue Zhang & Chuanwang Sun, 2024. "Hybrid transaction model for optimizing the distributed power trading market," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    13. Saqib Iqbal & Kamyar Mehran, 2022. "A Day-Ahead Energy Management for Multi MicroGrid System to Optimize the Energy Storage Charge and Grid Dependency—A Comparative Analysis," Energies, MDPI, vol. 15(11), pages 1-19, June.
    14. Mishra, Sakshi & Anderson, Kate & Miller, Brian & Boyer, Kyle & Warren, Adam, 2020. "Microgrid resilience: A holistic approach for assessing threats, identifying vulnerabilities, and designing corresponding mitigation strategies," Applied Energy, Elsevier, vol. 264(C).
    15. Hong, Bowen & Zhang, Weitong & Zhou, Yue & Chen, Jian & Xiang, Yue & Mu, Yunfei, 2018. "Energy-Internet-oriented microgrid energy management system architecture and its application in China," Applied Energy, Elsevier, vol. 228(C), pages 2153-2164.
    16. Yang, Chao & Yao, Wei & Fang, Jiakun & Ai, Xiaomeng & Chen, Zhe & Wen, Jinyu & He, Haibo, 2019. "Dynamic event-triggered robust secondary frequency control for islanded AC microgrid," Applied Energy, Elsevier, vol. 242(C), pages 821-836.
    17. Poolla, Chaitanya & Ishihara, Abraham K. & Milito, Rodolfo, 2019. "Designing near-optimal policies for energy management in a stochastic environment," Applied Energy, Elsevier, vol. 242(C), pages 1725-1737.
    18. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    19. Zia, Muhammad Fahad & Nasir, Mashood & Elbouchikhi, Elhoussin & Benbouzid, Mohamed & Vasquez, Juan C. & Guerrero, Josep M., 2022. "Energy management system for a hybrid PV-Wind-Tidal-Battery-based islanded DC microgrid: Modeling and experimental validation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    20. Clarke, Will Challis & Brear, Michael John & Manzie, Chris, 2020. "Control of an isolated microgrid using hierarchical economic model predictive control," Applied Energy, Elsevier, vol. 280(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7490-:d:1467087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.