IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i17p7465-d1466532.html
   My bibliography  Save this article

Efficiency Assessment of Urban Road Networks Connecting Critical Node Pairs under Seismic Hazard

Author

Listed:
  • Andrea Miano

    (Department of Engineering, Telematic University Pegaso, Centro Direzionale Isola F2, 80143 Napoli, Italy)

  • Marco Civera

    (Department of Structural, Building and Geotechnical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy)

  • Fabrizio Aloschi

    (Department of Structures for Engineering and Architecture, University of Naples “Federico II”, Via Claudio 21, 80125 Naples, Italy)

  • Valerio De Biagi

    (Department of Structural, Building and Geotechnical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy)

  • Bernardino Chiaia

    (Department of Structural, Building and Geotechnical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy)

  • Fulvio Parisi

    (Department of Structures for Engineering and Architecture, University of Naples “Federico II”, Via Claudio 21, 80125 Naples, Italy)

  • Andrea Prota

    (Department of Structures for Engineering and Architecture, University of Naples “Federico II”, Via Claudio 21, 80125 Naples, Italy)

Abstract

Building resilient infrastructure is at the core of sustainable development, as evidenced by the UN Sustainable Development Goal 9. In fact, the effective operation of road networks is crucial and strategic for the smooth functioning of a nation’s economy. This is also fundamental from a sustainability perspective, as efficient transportation networks reduce traffic, and thus, their environmental impact. However, road networks are constantly at risk of traffic closure and/or limitations due to a plurality of natural hazards. These environmental stressors, among other factors like aging and degradation of structural materials, negatively affect the disaster resilience of both single components and the system of road networks. However, the estimation of such resilience indices requires a broad multidisciplinary vision. In this work, a framework for application to large road networks is delineated. In the proposed methodology, seismic hazard is considered, and its corresponding impacts on road networks are evaluated. The assessment encompasses not only the road network system (including squares, roads, bridges, and viaducts) but also the buildings that are located in the urban area and interact with the network. In this context, the probability that buildings will suffer seismic-induced collapse and produce partial or total obstruction of roads is considered. This scheme is designed for implementation in different geographical contexts using geo-referenced data that include information about specific risks and alternative rerouting options. The proposed methodology is expected to support the mitigation of functionality loss in road networks after disasters, contributing to both the economic and social dimensions of sustainability. To evaluate the methodology, two case studies focusing specifically on hospital-to-hospital connections were conducted in Naples and Turin, Italy. However, the proposed approach is versatile and can be extended to other critical infrastructures, such as theatres, stadiums, and educational facilities.

Suggested Citation

  • Andrea Miano & Marco Civera & Fabrizio Aloschi & Valerio De Biagi & Bernardino Chiaia & Fulvio Parisi & Andrea Prota, 2024. "Efficiency Assessment of Urban Road Networks Connecting Critical Node Pairs under Seismic Hazard," Sustainability, MDPI, vol. 16(17), pages 1-18, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7465-:d:1466532
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/17/7465/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/17/7465/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Yangyang & Hou, Guangyang & Chen, Suren, 2021. "Post-earthquake resilience assessment and long-term restoration prioritization of transportation network," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    2. Bellei, Giuseppe & Gentile, Guido & Meschini, Lorenzo & Papola, Natale, 2006. "A demand model with departure time choice for within-day dynamic traffic assignment," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1557-1576, December.
    3. Zhou, Yaoming & Wang, Junwei & Sheu, Jiuh-Biing, 2019. "On connectivity of post-earthquake road networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 1-16.
    4. Sun, Li & D'Ayala, Dina & Fayjaloun, Rosemary & Gehl, Pierre, 2021. "Agent-based model on resilience-oriented rapid responses of road networks under seismic hazard," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    5. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Hongping & Fang, Yi-Ping & Zio, Enrico, 2022. "Resilience-oriented optimal post-disruption reconfiguration for coupled traffic-power systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    2. Liu, Qiang & Tang, Aiping & Huang, Delong & Huang, Ziyuan & Zhang, Bin & Xu, Xiuchen, 2022. "Total probabilistic measure for the potential risk of regional roads exposed to landslides," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    3. Yin, Jiateng & Ren, Xianliang & Liu, Ronghui & Tang, Tao & Su, Shuai, 2022. "Quantitative analysis for resilience-based urban rail systems: A hybrid knowledge-based and data-driven approach," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    4. Shang, Qingxue & Guo, Xiaodong & Li, Jichao & Wang, Tao, 2022. "Post-earthquake health care service accessibility assessment framework and its application in a medium-sized city," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    5. Yangyang Meng & Xiaofei Zhao & Jianzhong Liu & Qingjie Qi, 2023. "Dynamic Influence Analysis of the Important Station Evolution on the Resilience of Complex Metro Network," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    6. Kurmankhojayev, Daniyar & Li, Guoyuan & Chen, Anthony, 2024. "Link criticality index: Refinement, framework extension, and a case study," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    7. Wang, Jie & Zhang, Yangyi & Li, Shunlong & Xu, Wencheng & Jin, Yao, 2024. "Directed network-based connectivity probability evaluation for urban bridges," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    8. Li, Siping & Zhou, Yaoming & Kundu, Tanmoy & Zhang, Fangni, 2021. "Impact of entry restriction policies on international air transport connectivity during COVID-19 pandemic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    9. Liu, Qiang & Huang, Delong & Zhang, Bin & Tang, Aiping & Xu, Xiuchen, 2024. "Developing a probability-based technique to improve the measurement of landslide vulnerability on regional roads," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    10. Li, Siping & Zhou, Yaoming & Kundu, Tanmoy & Sheu, Jiuh-Biing, 2021. "Spatiotemporal variation of the worldwide air transportation network induced by COVID-19 pandemic in 2020," Transport Policy, Elsevier, vol. 111(C), pages 168-184.
    11. Aghababaei, Mohammad T. (Siavash) & Costello, Seosamh B. & Ranjitkar, Prakash, 2021. "Measures to evaluate post-disaster trip resilience on road networks," Journal of Transport Geography, Elsevier, vol. 95(C).
    12. Kenneth Martínez & David Claudio, 2023. "Expanding Fundamental Boundaries between Resilience and Survivability in Systems Engineering: A Literature Review," Sustainability, MDPI, vol. 15(6), pages 1-27, March.
    13. Li, Yang & Wu, Jialu & Xiao, Yunjiang & Hu, Hangqi & Wang, Wei & Chen, Jun, 2024. "Resilience analysis of highway network under rainfall using a data-driven percolation theory-based method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    14. Lu, Qing-Long & Sun, Wenzhe & Dai, Jiannan & Schmöcker, Jan-Dirk & Antoniou, Constantinos, 2024. "Traffic resilience quantification based on macroscopic fundamental diagrams and analysis using topological attributes," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    15. Xu, Xin-yue & Liu, Jun & Li, Hai-ying & Jiang, Man, 2016. "Capacity-oriented passenger flow control under uncertain demand: Algorithm development and real-world case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 130-148.
    16. Wandelt, Sebastian & Sun, Xiaoqian & Zhang, Anming, 2023. "Towards analyzing the robustness of the Integrated Global Transportation Network Abstraction (IGTNA)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    17. Shen, Yi & Yang, Huang & Ren, Gang & Ran, Bin, 2024. "Model cascading overload failure and dynamic vulnerability analysis of facility network of metro station," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    18. P.Delle Site & André de Palma & Samarth Ghoslya, 2024. "Matching and fair pricing of socially optimal, stable and financially sustainable ride-sharing in congestible networks," THEMA Working Papers 2024-06, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    19. Zhou, Xinxin & Huang, Yun & Bai, Guanghan & Xu, Bei & Tao, Junyong, 2024. "The resilience evaluation of unmanned autonomous swarm with informed agents under partial failure," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    20. Zhou, Mingzhi & Zhou, Jiangping, 2024. "Multiscalar trip resilience and metro station-area characteristics: A case study of Hong Kong amid the pandemic," Journal of Transport Geography, Elsevier, vol. 116(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7465-:d:1466532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.