IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i16p7236-d1461925.html
   My bibliography  Save this article

Unraveling the Valorization Potential of Pineapple Waste to Obtain Value-Added Products towards a Sustainable Circular Bioeconomy

Author

Listed:
  • Sarah L. Paz-Arteaga

    (Faculty of Sciences, Universidad Nacional de Colombia, Medellín 3840, Antioquia, Colombia)

  • Edith Cadena-Chamorro

    (Faculty of Sciences, Universidad Nacional de Colombia, Medellín 3840, Antioquia, Colombia)

  • Ricardo Goméz-García

    (CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal)

  • Liliana Serna-Cock

    (Faculty of Engineering and Administration, Universidad Nacional de Colombia, Palmira 763537, Valle del Cauca, Colombia)

  • Cristóbal N. Aguilar

    (Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Saltillo 25280, Coahuila, Mexico)

  • Cristian Torres-León

    (Research Center and Ethnobiological Garden, Universidad Autonoma de Coahuila, Viesca 27480, Coahuila, Mexico
    Agri-Food and Agro-Industrial Bioeconomy Research Group, Universidad Autonoma de Coahuila, Unidad Torreón, Torreón 27276, Coahuila, Mexico)

Abstract

The pineapple ( Ananas comosus ) is one of the most commercialized tropical fruits worldwide. Its high processing and consumption generate huge quantities of organic waste and severe economic and environmental issues. Embracing the circular bioeconomy concept, this fruit waste can be applied as a bioresource (raw material) for the obtention of a wide range of high-valued biocompounds by applying innovative and ecofriendly technologies. In this paper, we critically describe pineapple-derived waste, from their chemical composition to their functional and biological properties, as well as the latest advances on valorization technologies, particular solid and submerged fermentations. Notably, this article highlights the possibility of using pineapple waste to obtain bioactive compounds such as bromelain, phenolic compounds, and dietary fiber, which have important biological properties such as antioxidant, anticancer, antimicrobial, and prebiotic capacities. Indeed, pineapple wastes can become valued materials by using green and biotechnological technologies that allow us to maximize their potential and might avoid wastage and environmental issues. Nevertheless, it is necessary to further investigate the biomolecules present in the waste derived from different pineapple varieties and their health beneficial effects as well as emerging technologies in order to obtain a full spectrum of natural value-added compounds that industries and society demand today.

Suggested Citation

  • Sarah L. Paz-Arteaga & Edith Cadena-Chamorro & Ricardo Goméz-García & Liliana Serna-Cock & Cristóbal N. Aguilar & Cristian Torres-León, 2024. "Unraveling the Valorization Potential of Pineapple Waste to Obtain Value-Added Products towards a Sustainable Circular Bioeconomy," Sustainability, MDPI, vol. 16(16), pages 1-18, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:7236-:d:1461925
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/16/7236/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/16/7236/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Prasad, S. & Singh, Anoop & Joshi, H.C., 2007. "Ethanol as an alternative fuel from agricultural, industrial and urban residues," Resources, Conservation & Recycling, Elsevier, vol. 50(1), pages 1-39.
    2. Prakash Kumar Sarangi & Akhilesh Kumar Singh & Rajesh Kumar Srivastava & Vijai Kumar Gupta, 2023. "Recent Progress and Future Perspectives for Zero Agriculture Waste Technologies: Pineapple Waste as a Case Study," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samaneh Bahrololoum & Mojtaba Mahmood Molaei Kermani & Farzaneh Koohzadi, 2022. "Ecopreneurs and agricultural waste management," Journal of Global Entrepreneurship Research, Springer;UNESCO Chair in Entrepreneurship, vol. 12(1), pages 47-51, December.
    2. Douvartzides, Savvas & Charisiou, Nikolaos D. & Wang, Wen & Papadakis, Vagelis G. & Polychronopoulou, Kyriaki & Goula, Maria A., 2022. "Catalytic fast pyrolysis of agricultural residues and dedicated energy crops for the production of high energy density transportation biofuels. Part I: Chemical pathways and bio-oil upgrading," Renewable Energy, Elsevier, vol. 185(C), pages 483-505.
    3. Noori M. Cata Saady & Fatemeh Rezaeitavabe & Juan Enrique Ruiz Espinoza, 2021. "Chemical Methods for Hydrolyzing Dairy Manure Fiber: A Concise Review," Energies, MDPI, vol. 14(19), pages 1-15, September.
    4. Chouchene, Ajmia & Jeguirim, Mejdi & Khiari, Basma & Zagrouba, Fathi & Trouvé, Gwénaëlle, 2010. "Thermal degradation of olive solid waste: Influence of particle size and oxygen concentration," Resources, Conservation & Recycling, Elsevier, vol. 54(5), pages 271-277.
    5. Delon Konan & Ekoun Koffi & Adama Ndao & Eric Charles Peterson & Denis Rodrigue & Kokou Adjallé, 2022. "An Overview of Extrusion as a Pretreatment Method of Lignocellulosic Biomass," Energies, MDPI, vol. 15(9), pages 1-25, April.
    6. Samoraj, Mateusz & Dmytryk, Agnieszka & Tuhy, Łukasz & Zdunek, Anna & Rusek, Piotr & Moustakas, Konstantinos & Chojnacka, Katarzyna, 2023. "Applicability of alfalfa and goldenrod residues after supercritical CO2 extraction to plant micronutrient biosorption and renewable energy production," Energy, Elsevier, vol. 262(PA).
    7. Rojas-Flores Segundo & De La Cruz-Noriega Magaly & Cabanillas-Chirinos Luis & Nélida Milly Otiniano & Nancy Soto-Deza & Nicole Terrones-Rodriguez & De La Cruz-Cerquin Mayra, 2024. "Obtaining Sustainable Electrical Energy from Pepper Waste," Sustainability, MDPI, vol. 16(8), pages 1-12, April.
    8. Andrea Maria Patelski & Urszula Dziekońska-Kubczak & Maria Balcerek & Katarzyna Pielech-Przybylska & Piotr Dziugan & Joanna Berłowska, 2024. "The Ethanol Production from Sugar Beet Pulp Supported by Microbial Hydrolysis with Trichoderma viride," Energies, MDPI, vol. 17(4), pages 1-10, February.
    9. Arkadiusz Stępień & Wojciech Rejmer, 2022. "Effect of Fertilization with Meat and Bone Meal on the Production of Biofuel Obtained from Corn Grain," Energies, MDPI, vol. 16(1), pages 1-20, December.
    10. Melendez, Jesus R. & Mátyás, Bence & Hena, Sufia & Lowy, Daniel A. & El Salous, Ahmed, 2022. "Perspectives in the production of bioethanol: A review of sustainable methods, technologies, and bioprocesses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    11. Chen, Danan & Li, Jun & Li, Xing & Deng, Lisheng & He, Zhaohong & Huang, Hongyu & Kobayashi, Noriyuki, 2023. "Study on combustion characteristics of hydrogen addition on ammonia flame at a porous burner," Energy, Elsevier, vol. 263(PA).
    12. Richa Singh & Meenu Hans & Sachin Kumar & Yogender Kumar Yadav, 2023. "Thermophilic Anaerobic Digestion: An Advancement towards Enhanced Biogas Production from Lignocellulosic Biomass," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    13. Prakash Kumar Sarangi & Rajesh Kumar Srivastava & Akhilesh Kumar Singh & Uttam Kumar Sahoo & Piotr Prus & Roman Sass, 2023. "Municipal-Based Biowaste Conversion for Developing and Promoting Renewable Energy in Smart Cities," Sustainability, MDPI, vol. 15(17), pages 1-28, August.
    14. Osman, Ahmed I. & Qasim, Umair & Jamil, Farrukh & Al-Muhtaseb, Ala'a H. & Jrai, Ahmad Abu & Al-Riyami, Mohammed & Al-Maawali, Suhaib & Al-Haj, Lamya & Al-Hinai, Amer & Al-Abri, Mohammed & Inayat, Abra, 2021. "Bioethanol and biodiesel: Bibliometric mapping, policies and future needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    15. Polina Kuryntseva & Kamalya Karamova & Polina Galitskaya & Svetlana Selivanovskaya & Gennady Evtugyn, 2023. "Biochar Functions in Soil Depending on Feedstock and Pyrolyzation Properties with Particular Emphasis on Biological Properties," Agriculture, MDPI, vol. 13(10), pages 1-39, October.
    16. Rahul Prasad Singh & Priya Yadav & Indrajeet Kumar & Manoj Kumar Solanki & Rajib Roychowdhury & Ajay Kumar & Rajan Kumar Gupta, 2023. "Advancement of Abiotic Stresses for Microalgal Lipid Production and Its Bioprospecting into Sustainable Biofuels," Sustainability, MDPI, vol. 15(18), pages 1-36, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:7236-:d:1461925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.