IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i16p7204-d1461333.html
   My bibliography  Save this article

Towards 2050: Evaluating the Role of Energy Transformation for Sustainable Energy Growth in Serbia

Author

Listed:
  • Nemanja Backović

    (Faculty of Organizational Sciences, University of Belgrade, 11000 Belgrade, Serbia)

  • Bojan Ilić

    (Faculty of Organizational Sciences, University of Belgrade, 11000 Belgrade, Serbia)

  • Jelena Andreja Radaković

    (Faculty of Organizational Sciences, University of Belgrade, 11000 Belgrade, Serbia)

  • Dušan Mitrović

    (Faculty of Organizational Sciences, University of Belgrade, 11000 Belgrade, Serbia)

  • Nemanja Milenković

    (Faculty of Organizational Sciences, University of Belgrade, 11000 Belgrade, Serbia)

  • Marko Ćirović

    (Faculty of Organizational Sciences, University of Belgrade, 11000 Belgrade, Serbia)

  • Zoran Rakićević

    (Faculty of Organizational Sciences, University of Belgrade, 11000 Belgrade, Serbia)

  • Nataša Petrović

    (Faculty of Organizational Sciences, University of Belgrade, 11000 Belgrade, Serbia)

Abstract

This paper aims to investigate the outlook of energy generation by means of transformation within the context of sustainable energy development. An analysis is conducted to assess the stability of energy systems so to implement cutting-edge energy production models at the national level, with a focus on a contemporary approach to energy modeling. Considering the energy transition and the existing constraints within the energy industry, the model assesses the feasibility of the practical advancement of renewable energy sources. The bottom-up energy model was used to determine how the components of energy development sustainability can be applied until the year 2050. To perform comparison testing with the reference state scenario, the LEAP energy model was used. This instrument was selected because of its ability to provide flexible and advanced options for selecting suitable parameters for energy transformation prediction. A progressive reduction in environmental pollution can be achieved by the deployment of current methods of energy generation by transformation until the year 2050 in Serbia, as indicated by the findings. The research highlights the significance of utilizing green energy sources for the continuing development of energy and the gradual reduction in environmental pollution through value co-creation.

Suggested Citation

  • Nemanja Backović & Bojan Ilić & Jelena Andreja Radaković & Dušan Mitrović & Nemanja Milenković & Marko Ćirović & Zoran Rakićević & Nataša Petrović, 2024. "Towards 2050: Evaluating the Role of Energy Transformation for Sustainable Energy Growth in Serbia," Sustainability, MDPI, vol. 16(16), pages 1-22, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:7204-:d:1461333
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/16/7204/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/16/7204/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zili Yang, 2008. "Strategic Bargaining and Cooperation in Greenhouse Gas Mitigations: An Integrated Assessment Modeling Approach," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262240548, December.
    2. Malka, Lorenc & Bidaj, Flamur & Kuriqi, Alban & Jaku, Aldona & Roçi, Rexhina & Gebremedhin, Alemayehu, 2023. "Energy system analysis with a focus on future energy demand projections: The case of Norway," Energy, Elsevier, vol. 272(C).
    3. Andrea Herbst & Felipe Andrés Toro & Felix Reitze & Eberhard Jochem, 2012. "Introduction to Energy Systems Modelling," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 148(II), pages 111-135, June.
    4. Loschel, Andreas, 2002. "Technological change in economic models of environmental policy: a survey," Ecological Economics, Elsevier, vol. 43(2-3), pages 105-126, December.
    5. Bohringer, Christoph & Rutherford, Thomas F., 2008. "Combining bottom-up and top-down," Energy Economics, Elsevier, vol. 30(2), pages 574-596, March.
    6. Jean-Charles Hourcade, Mark Jaccard, Chris Bataille, and Frederic Ghersi, 2006. "Hybrid Modeling: New Answers to Old Challenges Introduction to the Special Issue of The Energy Journal," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 1-12.
    7. Jerry L. Holechek & Hatim M. E. Geli & Mohammed N. Sawalhah & Raul Valdez, 2022. "A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050?," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    8. Koopmans, Carl C. & te Velde, Dirk Willem, 2001. "Bridging the energy efficiency gap: using bottom-up information in a top-down energy demand model," Energy Economics, Elsevier, vol. 23(1), pages 57-75, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Halkos, George, 2014. "The Economics of Climate Change Policy: Critical review and future policy directions," MPRA Paper 56841, University Library of Munich, Germany.
    2. Desport, Lucas & Gurgel, Angelo & Morris, Jennifer & Herzog, Howard & Chen, Yen-Heng Henry & Selosse, Sandrine & Paltsev, Sergey, 2024. "Deploying direct air capture at scale: How close to reality?," Energy Economics, Elsevier, vol. 129(C).
    3. Ekaterina Rhodes & Kira Craig & Aaron Hoyle & Madeleine McPherson, 2021. "How Do Energy-Economy Models Compare? A Survey of Model Developers and Users in Canada," Sustainability, MDPI, vol. 13(11), pages 1-39, May.
    4. Fattahi, A. & Sijm, J. & Faaij, A., 2020. "A systemic approach to analyze integrated energy system modeling tools: A review of national models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Andrea Herbst & Felipe Andrés Toro & Felix Reitze & Eberhard Jochem, 2012. "Introduction to Energy Systems Modelling," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 148(II), pages 111-135, June.
    6. Rhodes, Ekaterina & Hoyle, Aaron & McPherson, Madeleine & Craig, Kira, 2022. "Understanding climate policy projections: A scoping review of energy-economy models in Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    7. Dai, Hancheng & Mischke, Peggy & Xie, Xuxuan & Xie, Yang & Masui, Toshihiko, 2016. "Closing the gap? Top-down versus bottom-up projections of China’s regional energy use and CO2 emissions," Applied Energy, Elsevier, vol. 162(C), pages 1355-1373.
    8. Omar Shafqat & Elena Malakhatka & Nina Chrobot & Per Lundqvist, 2021. "End Use Energy Services Framework Co-Creation with Multiple Stakeholders—A Living Lab-Based Case Study," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    9. Martin T. Ross, Patrick T. Sullivan, Allen A. Fawcett, and Brooks M. Depro, 2014. "Investigating Technology Options for Climate Policies: Differentiated Roles in ADAGE," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    10. Sebastian Rausch & Valerie J. Karplus, 2014. "Markets versus Regulation: The Efficiency and Distributional Impacts of U.S. Climate Policy Proposals," The Energy Journal, , vol. 35(1_suppl), pages 199-228, June.
    11. Julien Lefevre, 2018. "Modeling the Socioeconomic Impacts of the Adoption of a Carbon Pricing Instrument – Literature review," CIRED Working Papers hal-03128619, HAL.
    12. Pablo Pintos & Pedro Linares, 2016. "Assessing the EU ETS with an Integrated Model," Working Papers 01-2016, Economics for Energy.
    13. Liu, Li-Jing & Yao, Yun-Fei & Liang, Qiao-Mei & Qian, Xiang-Yan & Xu, Chun-Lei & Wei, Si-Yi & Creutzig, Felix & Wei, Yi-Ming, 2021. "Combining economic recovery with climate change mitigation: A global evaluation of financial instruments," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 438-453.
    14. Andersen, Kristoffer S. & Termansen, Lars B. & Gargiulo, Maurizio & Ó Gallachóirc, Brian P., 2019. "Bridging the gap using energy services: Demonstrating a novel framework for soft linking top-down and bottom-up models," Energy, Elsevier, vol. 169(C), pages 277-293.
    15. Anandarajah, Gabrial & Strachan, Neil, 2010. "Interactions and implications of renewable and climate change policy on UK energy scenarios," Energy Policy, Elsevier, vol. 38(11), pages 6724-6735, November.
    16. Raventós, Oriol & Dengiz, Thomas & Medjroubi, Wided & Unaichi, Chinonso & Bruckmeier, Andreas & Finck, Rafael, 2022. "Comparison of different methods of spatial disaggregation of electricity generation and consumption time series," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    17. Rausch, Sebastian & Zhang, Da, 2018. "Capturing natural resource heterogeneity in top-down energy-economic equilibrium models," Energy Economics, Elsevier, vol. 74(C), pages 917-926.
    18. Willenbockel, Dirk, 2017. "Macroeconomic Effects of a Low-Carbon Electricity Transition in Kenya and Ghana: An Exploratory Dynamic General Equilibrium Analysis," MPRA Paper 78070, University Library of Munich, Germany.
    19. Lee, Hwarang & Kang, Sung Won & Koo, Yoonmo, 2020. "A hybrid energy system model to evaluate the impact of climate policy on the manufacturing sector: Adoption of energy-efficient technologies and rebound effects," Energy, Elsevier, vol. 212(C).
    20. Bruno Merven & Channing Arndt & Harald Winkler, 2017. "The development of a linked modelling framework for analysing the socioeconomic impacts of energy and climate policies in South Africa," WIDER Working Paper Series 040, World Institute for Development Economic Research (UNU-WIDER).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:7204-:d:1461333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.