IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i16p7106-d1459171.html
   My bibliography  Save this article

Is It Necessarily Better for More Commuters to Share a Vehicle?

Author

Listed:
  • Zhen Wang

    (International School of Low Carbon Studies, Shandong University of Finance and Economics, Jinan 250014, China)

  • Haiyun Chen

    (School of Economics and Management, Tongji University, Shanghai 200092, China
    School of Management, Katholische Universität Eichstätt-Ingolstadt, D-85049 Eichstätt, Germany)

  • Ting Zhu

    (School of Economics, Shanghai University, Shanghai 200444, China)

  • Jiazhen Huo

    (School of Economics and Management, Tongji University, Shanghai 200092, China
    School of Economics and Management, Shanghai Zhongqiao Vocational and Technical University, Shanghai 201514, China)

Abstract

Increasing private car ownership has congested urban roads and made parking more difficult, especially during the morning commute. Carpooling offers a new way to address these problems. This paper studies the dynamic departure patterns for both regular and carpooling vehicles with parking space constraints in the morning commute without the carpool lane. The results suggest that as the parking fee of the central cluster increases, the earliest time for the two types of vehicles to enter the central cluster is delayed. The increase in the proportion of regular vehicles delays the earliest time for carpooling vehicles to enter the central cluster. More commuters sharing a vehicle in the morning commute is not necessarily better. Only a reasonable level of carpooling can reduce the peak time and unnecessary time consumption on the road and effectively promote the reduction in parking fees, commuters’ travel costs, and other societal transportation costs. This research gives practical guidance and suggestions on formulating a reasonable parking fee and controlling a reasonable carpooling level.

Suggested Citation

  • Zhen Wang & Haiyun Chen & Ting Zhu & Jiazhen Huo, 2024. "Is It Necessarily Better for More Commuters to Share a Vehicle?," Sustainability, MDPI, vol. 16(16), pages 1-23, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:7106-:d:1459171
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/16/7106/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/16/7106/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Wei & Zhang, Fangni & Yang, Hai, 2017. "Modeling and managing morning commute with both household and individual travels," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 227-247.
    2. Yan, Xiang & Levine, Jonathan & Marans, Robert, 2019. "The effectiveness of parking policies to reduce parking demand pressure and car use," Transport Policy, Elsevier, vol. 73(C), pages 41-50.
    3. Wang, Jing-Peng & Ban, Xuegang (Jeff) & Huang, Hai-Jun, 2019. "Dynamic ridesharing with variable-ratio charging-compensation scheme for morning commute," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 390-415.
    4. Xiao, Ling-Ling & Liu, Tian-Liang & Huang, Hai-Jun & Liu, Ronghui, 2021. "Temporal-spatial allocation of bottleneck capacity for managing morning commute with carpool," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 177-200.
    5. Yang, Hai & Liu, Wei & Wang, Xiaolei & Zhang, Xiaoning, 2013. "On the morning commute problem with bottleneck congestion and parking space constraints," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 106-118.
    6. Saxena, Aditya & Gupta, Vallary, 2023. "Carpooling: Who is closest to adopting it? An investigation into the potential car-poolers among private vehicle users: A case of a developing country, India," Transport Policy, Elsevier, vol. 135(C), pages 11-20.
    7. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    8. Zhang, Xiang & Liu, Wei & Waller, S. Travis & Yin, Yafeng, 2019. "Modelling and managing the integrated morning-evening commuting and parking patterns under the fully autonomous vehicle environment," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 380-407.
    9. Yu, Xiaojuan & van den Berg, Vincent A.C. & Verhoef, Erik T., 2019. "Carpooling with heterogeneous users in the bottleneck model," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 178-200.
    10. Frascaria, Dario & Olver, Neil & Verhoef, Erik, 2020. "Emergent hypercongestion in Vickrey bottleneck networks," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 523-538.
    11. Xiao, Ling-Ling & Liu, Tian-Liang & Huang, Hai-Jun, 2016. "On the morning commute problem with carpooling behavior under parking space constraint," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 383-407.
    12. Chen, Zhi & Wu, Wen-Xiang & Huang, Hai-Jun & Shang, Hua-Yan, 2022. "Modeling traffic dynamics in periphery-downtown urban networks combining Vickrey's theory with Macroscopic Fundamental Diagram: user equilibrium, system optimum, and cordon pricing," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 278-303.
    13. Ma, Rui & Zhang, H.M., 2017. "The morning commute problem with ridesharing and dynamic parking charges," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 345-374.
    14. Zhang, Xiaoning & Huang, Hai-Jun & Zhang, H.M., 2008. "Integrated daily commuting patterns and optimal road tolls and parking fees in a linear city," Transportation Research Part B: Methodological, Elsevier, vol. 42(1), pages 38-56, January.
    15. Tian, Li-Jun & Sheu, Jiuh-Biing & Huang, Hai-Jun, 2019. "The morning commute problem with endogenous shared autonomous vehicle penetration and parking space constraint," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 258-278.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Senlai Zhu & Hantao Yu & Congjun Fan, 2024. "Travel Plan Sharing and Regulation for Managing Traffic Bottleneck Based on Blockchain Technology," Sustainability, MDPI, vol. 16(4), pages 1-20, February.
    2. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    3. Zhang, Yuan & Zhao, Hui & Jiang, Rui, 2024. "Manage morning commute for household travels with parking space constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    4. Zhang, Xiang & Liu, Wei & Levin, Michael & Travis Waller, S., 2023. "Equilibrium analysis of morning commuting and parking under spatial capacity allocation in the autonomous vehicle environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    5. Tang, Zhe-Yi & Tian, Li-Jun & Wang, David Z.W., 2021. "Multi-modal morning commute with endogenous shared autonomous vehicle penetration considering parking space constraint," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    6. Lu, Xiao-Shan & Huang, Hai-Jun & Guo, Ren-Yong & Xiong, Fen, 2021. "Linear location-dependent parking fees and integrated daily commuting patterns with late arrival and early departure in a linear city," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 293-322.
    7. Huang, Zhihui & Long, Jiancheng & Szeto, W.Y. & Liu, Haoxiang, 2021. "Modeling and managing the morning commute problem with park-and-ride-sharing," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 190-226.
    8. Zipeng Zhang & Ning Zhang, 2021. "Early Bird Scheme for Parking Management: How Does Parking Play a Role in the Morning Commute Problem," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    9. Xiao, Ling-Ling & Liu, Tian-Liang & Huang, Hai-Jun & Liu, Ronghui, 2021. "Temporal-spatial allocation of bottleneck capacity for managing morning commute with carpool," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 177-200.
    10. Lu, Xiao-Shan & Guo, Ren-Yong & Huang, Hai-Jun & Xu, Xiaoming & Chen, Jiajia, 2021. "Equilibrium analysis of parking for integrated daily commuting," Research in Transportation Economics, Elsevier, vol. 90(C).
    11. Wu, Jiyan & Tian, Ye & Sun, Jian, 2023. "Managing ridesharing with incentives in a bottleneck model," Research in Transportation Economics, Elsevier, vol. 101(C).
    12. Ling-Ling Xiao & Tian-Liang Liu & Hai-Jun Huang, 2021. "Tradable permit schemes for managing morning commute with carpool under parking space constraint," Transportation, Springer, vol. 48(4), pages 1563-1586, August.
    13. Pan, Manlian & Sun, Xiaotong, 2024. "Exploring the role of Mobility-as-a-Service in morning commuting trips," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    14. Zhang, Xiang & Liu, Wei & Waller, S. Travis & Yin, Yafeng, 2019. "Modelling and managing the integrated morning-evening commuting and parking patterns under the fully autonomous vehicle environment," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 380-407.
    15. Tian, Li-Jun & Sheu, Jiuh-Biing & Huang, Hai-Jun, 2019. "The morning commute problem with endogenous shared autonomous vehicle penetration and parking space constraint," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 258-278.
    16. Xiaojuan Yu & Vincent A.C. van den Berg, 2024. "Human-driven vehicles’ cruising versus autonomous vehicles’ back- and-forth congestion: The effects on traveling, parking and congestion," Tinbergen Institute Discussion Papers 24-032/VIII, Tinbergen Institute.
    17. Li, Yuanyuan & Liu, Yang, 2021. "Optimizing flexible one-to-two matching in ride-hailing systems with boundedly rational users," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    18. Li, Wei-Hong & Huang, Hai-Jun & Shang, Hua-Yan, 2020. "Dynamic equilibrium commuting in a multilane system with ridesharing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    19. Fu, Yulan & Wang, Chenlan & Liu, Tian-Liang & Huang, Hai-Jun, 2021. "Parking management in the morning commute problem with ridesharing," Research in Transportation Economics, Elsevier, vol. 90(C).
    20. Wei Wu & Wei Liu & Fangni Zhang & Vinayak Dixit, 2021. "A New Flexible Parking Reservation Scheme for the Morning Commute under Limited Parking Supplies," Networks and Spatial Economics, Springer, vol. 21(3), pages 513-545, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:7106-:d:1459171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.