IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i16p6924-d1455042.html
   My bibliography  Save this article

Multi-Objective Optimization of Synergic Perchlorate Pollution Reduction and Energy Conservation in China’s Perchlorate Manufacturing Industry

Author

Listed:
  • Ying Li

    (School of Energy and Environment, Southeast University, Nanjing 210096, China)

  • Hongyang Wang

    (State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China)

  • Guangcan Zhu

    (School of Energy and Environment, Southeast University, Nanjing 210096, China)

Abstract

Perchlorate is a highly mobile and persistent toxic contaminant, with the potassium perchlorate manufacturing industry being a significant anthropogenic source. This study addresses the Energy Conservation and Perchlorate Discharge Reduction (ECPDR) challenges in China’s potassium perchlorate manufacturing industry through a multi-objective optimization model under uncertainty. The objectives encompass energy conservation, perchlorate discharge reduction, and economic cost control, with uncertainty parameters simulated via Latin Hypercube Sampling (LHS). The optimization was performed using both the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) and the Generalized Differential Evolution 3 (GDE3) algorithm, enabling a comparative analysis. Three types of decision-maker preferences were then evaluated using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to generate optimal decision strategies. Results revealed: (1) The comprehensive perchlorate discharge intensity in China’s potassium perchlorate industry is approximately 23.86 kg/t KClO 4 . (2) Compared to NSGA-II, GDE3 offers a more robust and efficient approach to finding optimal solutions within a limited number of iterations. (3) Implementing the optimal solution under PERP can reduce perchlorate discharge intensity to 0.0032 kg/t. (4) Processes lacking primary electrolysis should be phased out, while those with MVR technology should be promoted. This study provides critical policy recommendations for controlling perchlorate pollution and guiding the industry toward cleaner and more sustainable production practices.

Suggested Citation

  • Ying Li & Hongyang Wang & Guangcan Zhu, 2024. "Multi-Objective Optimization of Synergic Perchlorate Pollution Reduction and Energy Conservation in China’s Perchlorate Manufacturing Industry," Sustainability, MDPI, vol. 16(16), pages 1-20, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:6924-:d:1455042
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/16/6924/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/16/6924/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    2. Wang, Yihan & Chen, Chen & Tao, Yuan & Wen, Zongguo & Chen, Bin & Zhang, Hong, 2019. "A many-objective optimization of industrial environmental management using NSGA-III: A case of China’s iron and steel industry," Applied Energy, Elsevier, vol. 242(C), pages 46-56.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongming Song & Jun Hu, 2017. "Vector similarity measures of hesitant fuzzy linguistic term sets and their applications," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-13, December.
    2. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    3. Hae-Yeol Kang & Seung Taek Chae & Eun-Sung Chung, 2023. "Quantifying Medium-Sized City Flood Vulnerability Due to Climate Change Using Multi-Criteria Decision-Making Techniques: Case of Republic of Korea," Sustainability, MDPI, vol. 15(22), pages 1-20, November.
    4. Zheng, Guozhong & Wang, Xiao, 2020. "The comprehensive evaluation of renewable energy system schemes in tourist resorts based on VIKOR method," Energy, Elsevier, vol. 193(C).
    5. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    6. Milad Zamanifar & Seyed Mohammad Seyedhoseyni, 2017. "Recovery planning model for roadways network after natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 699-716, June.
    7. Pedro Ponce & Citlaly Pérez & Aminah Robinson Fayek & Arturo Molina, 2022. "Solar Energy Implementation in Manufacturing Industry Using Multi-Criteria Decision-Making Fuzzy TOPSIS and S4 Framework," Energies, MDPI, vol. 15(23), pages 1-19, November.
    8. Mohit Jain & Gunjan Soni & Deepak Verma & Rajendra Baraiya & Bharti Ramtiyal, 2023. "Selection of Technology Acceptance Model for Adoption of Industry 4.0 Technologies in Agri-Fresh Supply Chain," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    9. Chen, Lisa Y. & Wang, Tien-Chin, 2009. "Optimizing partners' choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR," International Journal of Production Economics, Elsevier, vol. 120(1), pages 233-242, July.
    10. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    11. Deb, Madhujit & Debbarma, Bishop & Majumder, Arindam & Banerjee, Rahul, 2016. "Performance –emission optimization of a diesel-hydrogen dual fuel operation: A NSGA II coupled TOPSIS MADM approach," Energy, Elsevier, vol. 117(P1), pages 281-290.
    12. Kuang-Hua Hu & Wei Jianguo & Gwo-Hshiung Tzeng, 2017. "Risk Factor Assessment Improvement for China’s Cloud Computing Auditing Using a New Hybrid MADM Model," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(03), pages 737-777, May.
    13. Fernando Rojas & Peter Wanke & Víctor Leiva & Mauricio Huerta & Carlos Martin-Barreiro, 2022. "Modeling Inventory Cost Savings and Supply Chain Success Factors: A Hybrid Robust Compromise Multi-Criteria Approach," Mathematics, MDPI, vol. 10(16), pages 1-18, August.
    14. Maghsoodi, Abtin Ijadi, 2023. "Cryptocurrency portfolio allocation using a novel hybrid and predictive big data decision support system," Omega, Elsevier, vol. 115(C).
    15. Hisham Alidrisi, 2021. "An Innovative Job Evaluation Approach Using the VIKOR Algorithm," JRFM, MDPI, vol. 14(6), pages 1-19, June.
    16. Büsing, Christina & Goetzmann, Kai-Simon & Matuschke, Jannik & Stiller, Sebastian, 2017. "Reference points and approximation algorithms in multicriteria discrete optimization," European Journal of Operational Research, Elsevier, vol. 260(3), pages 829-840.
    17. Abbas Keramati & Fatemeh Shapouri, 2016. "Multidimensional appraisal of customer relationship management: integrating balanced scorecard and multi criteria decision making approaches," Information Systems and e-Business Management, Springer, vol. 14(2), pages 217-251, May.
    18. Xiaodong Li & Haibo Kuang & Yan Hu, 2019. "Carbon Mitigation Strategies of Port Selection and Multimodal Transport Operations—A Case Study of Northeast China," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
    19. Serafim Opricovic, 2009. "A Compromise Solution in Water Resources Planning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1549-1561, June.
    20. Büyüközkan, Gülçin & Ruan, Da, 2008. "Evaluation of software development projects using a fuzzy multi-criteria decision approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(5), pages 464-475.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:6924-:d:1455042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.