IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i16p6912-d1454712.html
   My bibliography  Save this article

Applications of the Separation of Variables Method and Duhamel’s Principle to Instantaneously Released Point-Source Solute Model in Water Environmental Flow

Author

Listed:
  • Ran Gao

    (School of Mathematics, Hohai University, Nanjing 211100, China)

  • Juncai Gao

    (Expert Academic Committee, China International Engineering Consulting Corporation, Beijing 100048, China)

  • Linlin Chu

    (College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China)

Abstract

The transport–diffusion problem of point-source solutes in water environmental flows is an important issue in environmental fluid mechanics, with significant theoretical and practical implications for sustainable development and the ecological management and environmental protection of water. This study presents a model for instantaneously released multi-point-source solutes, utilizing the separation of variables method and Duhamel’s principle to solve classical mathematical physics equations. The zeroth-order and first-order concentration moment equations, which are crucial for predicting the cross-sectional average concentration of instantaneously released point-source solutes, are systematically addressed. The accuracy of the analytical results is confirmed by comparing them with the relevant literature. Furthermore, a general discussion is provided based on the study’s findings (including an ideal physical model of Couette flow), and an analytical solution (a recursive relationship) for higher-order concentration moments is deduced. Finally, this study quantitatively discusses downstream environmental ecological effects by examining the movement of released point-source solute centroids in the river, illustrating that the time needed for the released point-source solute to have an environmental–ecological impact downstream of the river is dependent on the initial release location. Under the specified engineering parameters, for the release location at the bottom boundary point of the channel ( z 0 = 0 m), the midpoint ( z 0 = 5 m), and the water-surface point ( z 0 = 10 m), the time for additional displacement of released solute centroid to reach the asymptotic value in three cases is 4.0 h, 1.0 h, and 4.5 h; the asymptotic values are approximately −0.087 km, 0.012 km, and 0.055 km, respectively. These results not only correspond with the conclusions of previous research but also provide a more extensive range of numerical results. This study establishes the groundwork for theoretical research on more complex water environmental flow models and provides a theoretical basis for engineering computations aimed at contributing to the environmental management of rivers and lakes.

Suggested Citation

  • Ran Gao & Juncai Gao & Linlin Chu, 2024. "Applications of the Separation of Variables Method and Duhamel’s Principle to Instantaneously Released Point-Source Solute Model in Water Environmental Flow," Sustainability, MDPI, vol. 16(16), pages 1-19, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:6912-:d:1454712
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/16/6912/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/16/6912/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, G.Q. & Zeng, L. & Wu, Z., 2010. "An ecological risk assessment model for a pulsed contaminant emission into a wetland channel flow," Ecological Modelling, Elsevier, vol. 221(24), pages 2927-2937.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Zhifeng & Mao, Xufeng, 2011. "Wetland system network analysis for environmental flow allocations in the Baiyangdian Basin, China," Ecological Modelling, Elsevier, vol. 222(20), pages 3785-3794.
    2. Mandal, Sudipto & Roy Goswami, Abhishek & Mukhopadhyay, Subhra Kumar & Ray, Santanu, 2015. "Simulation model of phosphorus dynamics of an eutrophic impoundment – East Calcutta Wetlands, a Ramsar site in India," Ecological Modelling, Elsevier, vol. 306(C), pages 226-239.
    3. Wu, X.F. & Chen, G.Q. & Wu, X.D. & Yang, Q. & Alsaedi, A. & Hayat, T. & Ahmad, B., 2015. "Renewability and sustainability of biogas system: Cosmic exergy based assessment for a case in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1509-1524.
    4. Chen, Shaoqing & Chen, Bin & Fath, Brian D., 2013. "Ecological risk assessment on the system scale: A review of state-of-the-art models and future perspectives," Ecological Modelling, Elsevier, vol. 250(C), pages 25-33.
    5. Wu, Z. & Chen, G.Q. & Zeng, L., 2011. "Environmental dispersion in a two-zone wetland," Ecological Modelling, Elsevier, vol. 222(3), pages 456-474.
    6. Tang, P.Z. & Liu, J.Z. & Lu, H.W. & Wang, Z. & He, L., 2017. "Information-based Network Environ Analysis for Ecological Risk Assessment of heavy metals in soils," Ecological Modelling, Elsevier, vol. 344(C), pages 17-28.
    7. Zeng, L. & Wu, Y.H. & Ji, P. & Chen, B. & Zhao, Y.J. & Chen, G.Q. & Wu, Z., 2012. "Effect of wind on contaminant dispersion in a wetland flow dominated by free-surface effect," Ecological Modelling, Elsevier, vol. 237, pages 101-108.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:6912-:d:1454712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.