IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i15p6654-d1449422.html
   My bibliography  Save this article

Experimental Study on Heat Release Performance for Sorption Thermal Battery Based on Wave Analysis Method

Author

Listed:
  • Meng Yu

    (Special Equipment Safety Supervision and Inspection Institute of Jiangsu Province, Nanjing 210036, China
    Key Laboratory of Liquid Hydrogen Energy Storage and Transportation Equipment for Jiangsu Province Market Regulation, Nanjing 210036, China)

  • Wei Liu

    (Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China)

  • Yuchen Lin

    (Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China)

  • Neng Gao

    (Institute of Energy and Environment Engineering, NingboTech University, Ningbo 315000, China)

  • Xuejun Zhang

    (Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China)

  • Long Jiang

    (Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China)

Abstract

Recent developments in water-based open sorption thermal batteries (STBs) have drawn burgeoning attention due to their advantages of high energy storage density and flexible working modes for space heating. One of the main challenges is how to improve heat release performance, e.g., longer stable heat output and effective output temperature. This paper aims to explore the heat release performance of sorption thermal batteries based on wave analysis methods. Zeolite 13X is used for the experimental investigation in terms of the relative humidity of inlet gas, system air velocity, and the length of the reactor. The results demonstrate that the optimal stable temperature output time of the sorption thermal battery experimental rig is 80 min, and heat release per unit volume reaches 115.6 MJ for the most appropriate reactor length. Thus, the optimal heat release time of the STB under the condition of various relative humidity and air velocities is 152 min and 182 min, respectively, and the corresponding stable heat release could reach 161.1 MJ and 136.5 MJ, respectively. Therefore, the heat release performance of STBs could be adjusted by adopting the wave analysis method, which would facilitate the reactor design and system arrangement.

Suggested Citation

  • Meng Yu & Wei Liu & Yuchen Lin & Neng Gao & Xuejun Zhang & Long Jiang, 2024. "Experimental Study on Heat Release Performance for Sorption Thermal Battery Based on Wave Analysis Method," Sustainability, MDPI, vol. 16(15), pages 1-18, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6654-:d:1449422
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/15/6654/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/15/6654/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vecchi, Andrea & Sciacovelli, Adriano, 2023. "Long-duration thermo-mechanical energy storage – Present and future techno-economic competitiveness," Applied Energy, Elsevier, vol. 334(C).
    2. Jiang, L. & Roskilly, A.P. & Wang, R.Z. & Wang, L.W., 2018. "Analysis on innovative resorption cycle for power and refrigeration cogeneration," Applied Energy, Elsevier, vol. 218(C), pages 10-21.
    3. Michel, Benoit & Mazet, Nathalie & Neveu, Pierre, 2016. "Experimental investigation of an open thermochemical process operating with a hydrate salt for thermal storage of solar energy: Local reactive bed evolution," Applied Energy, Elsevier, vol. 180(C), pages 234-244.
    4. Lyden, A. & Brown, C.S. & Kolo, I. & Falcone, G. & Friedrich, D., 2022. "Seasonal thermal energy storage in smart energy systems: District-level applications and modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Yan, J. & Pan, Z.H. & Zhao, C.Y., 2020. "Experimental study of MgO/Mg(OH)2 thermochemical heat storage with direct heat transfer mode," Applied Energy, Elsevier, vol. 275(C).
    6. Steinmann, Wolf-Dieter, 2017. "Thermo-mechanical concepts for bulk energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 205-219.
    7. Ding, Zhixiong & Wu, Wei, 2022. "Type II absorption thermal battery for temperature upgrading: Energy storage heat transformer," Applied Energy, Elsevier, vol. 324(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2022. "Salt hydrate–based gas-solid thermochemical energy storage: Current progress, challenges, and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Cetegen, Shaylin A. & Gundersen, Truls & Barton, Paul I., 2024. "Evaluating economic feasibility of liquid air energy storage systems in US and European markets," Energy, Elsevier, vol. 300(C).
    3. Bruno Cárdenas & Lawrie Swinfen-Styles & James Rouse & Seamus D. Garvey, 2021. "Short-, Medium-, and Long-Duration Energy Storage in a 100% Renewable Electricity Grid: A UK Case Study," Energies, MDPI, vol. 14(24), pages 1-28, December.
    4. Serguey A. Maximov & Gareth P. Harrison & Daniel Friedrich, 2019. "Long Term Impact of Grid Level Energy Storage on Renewable Energy Penetration and Emissions in the Chilean Electric System," Energies, MDPI, vol. 12(6), pages 1-19, March.
    5. Ameen, Muhammad Tahir & Ma, Zhiwei & Smallbone, Andrew & Norman, Rose & Roskilly, Anthony Paul, 2023. "Demonstration system of pumped heat energy storage (PHES) and its round-trip efficiency," Applied Energy, Elsevier, vol. 333(C).
    6. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    7. Ur Rehman, Ata & Zhao, Tianyu & Shah, Muhammad Zahir & Khan, Yaqoob & Hayat, Asif & Dang, Changwei & Zheng, Maosheng & Yun, Sining, 2023. "Nanoengineering of MgSO4 nanohybrid on MXene substrate for efficient thermochemical heat storage material," Applied Energy, Elsevier, vol. 332(C).
    8. Kawaguchi, Takahiro & Sakai, Hiroki & Sheng, Nan & Kurniawan, Ade & Nomura, Takahiro, 2020. "Microencapsulation of Zn-Al alloy as a new phase change material for middle-high-temperature thermal energy storage applications," Applied Energy, Elsevier, vol. 276(C).
    9. Okazaki, Toru, 2020. "Electric thermal energy storage and advantage of rotating heater having synchronous inertia," Renewable Energy, Elsevier, vol. 151(C), pages 563-574.
    10. Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2020. "Development and characteristics analysis of salt-hydrate based composite sorbent for low-grade thermochemical energy storage," Renewable Energy, Elsevier, vol. 157(C), pages 920-940.
    11. Vecchi, Andrea & Naughton, James & Li, Yongliang & Mancarella, Pierluigi & Sciacovelli, Adriano, 2020. "Multi-mode operation of a Liquid Air Energy Storage (LAES) plant providing energy arbitrage and reserve services – Analysis of optimal scheduling and sizing through MILP modelling with integrated ther," Energy, Elsevier, vol. 200(C).
    12. Zhang, Weifeng & Ding, Jialu & Yin, Suzhen & Zhang, Fangyuan & Zhang, Yao & Liu, Zhan, 2024. "Thermo-economic optimization of an artificial cavern compressed air energy storage with CO2 pressure stabilizing unit," Energy, Elsevier, vol. 294(C).
    13. Zhang, Y.N. & Wang, R.Z. & Li, T.X., 2017. "Experimental investigation on an open sorption thermal storage system for space heating," Energy, Elsevier, vol. 141(C), pages 2421-2433.
    14. Haoyuan Ma & Zhan Liu, 2022. "An Engine Exhaust Utilization System by Combining CO 2 Brayton Cycle and Transcritical Organic Rankine Cycle," Sustainability, MDPI, vol. 14(3), pages 1-17, January.
    15. Sorknæs, Peter & Thellufsen, Jakob Zinck & Knobloch, Kai & Engelbrecht, Kurt & Yuan, Meng, 2023. "Economic potentials of carnot batteries in 100% renewable energy systems," Energy, Elsevier, vol. 282(C).
    16. Chen, S. & Shi, W.K. & Yong, J.Y. & Zhuang, Y. & Lin, Q.Y. & Gao, N. & Zhang, X.J. & Jiang, L., 2023. "Numerical study on a structured packed adsorption bed for indoor direct air capture," Energy, Elsevier, vol. 282(C).
    17. Dong, Haoxin & Shan, Zijing & Zhou, Jianli & Xu, Chuanbo & Chen, Wenjun, 2023. "Refined modeling and co-optimization of electric-hydrogen-thermal-gas integrated energy system with hybrid energy storage," Applied Energy, Elsevier, vol. 351(C).
    18. Luo, Jielin & Yang, Hongxing, 2023. "Investigations on a bubble-pump-aided diffusion absorption heat transformer using deep eutectic solvent for harvesting and upgrading thermal energy," Applied Energy, Elsevier, vol. 340(C).
    19. Zhang, Yannan & Yan, Taisen & Wang, Ruzhu, 2024. "A new strategy of dual-material reactors for stable thermal output of sorption thermal battery," Energy, Elsevier, vol. 293(C).
    20. Jockenhöfer, Henning & Steinmann, Wolf-Dieter & Bauer, Dan, 2018. "Detailed numerical investigation of a pumped thermal energy storage with low temperature heat integration," Energy, Elsevier, vol. 145(C), pages 665-676.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6654-:d:1449422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.