IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i15p6449-d1444552.html
   My bibliography  Save this article

Carbon Footprint of Main Grain Crop Production in Hubei and Jiangsu Provinces, 2005–2019

Author

Listed:
  • Yunxia Han

    (Business School, Yangzhou University, Yangzhou 225009, China
    China Grand Canal Research Institute, Yangzhou University, Yangzhou 225009, China)

  • Wende Xi

    (Business School, Yangzhou University, Yangzhou 225009, China)

  • Jing Xu

    (Business School, Yangzhou University, Yangzhou 225009, China
    China Grand Canal Research Institute, Yangzhou University, Yangzhou 225009, China)

  • Guanxin Yao

    (Business School, Yangzhou University, Yangzhou 225009, China
    China Grand Canal Research Institute, Yangzhou University, Yangzhou 225009, China)

Abstract

Hubei and Jiangsu Provinces, significant in grain production, play a crucial role in national food security. We studied the carbon footprint of main grain crops (rice, maize, and wheat) from 2005 to 2019 in these provinces to identify trends, contributing factors, and emission efficiencies. This study seeks to inform sustainable agricultural practices and policies in the context of climate change mitigation. Jiangsu Province’s rice and wheat output surpasses Hubei’s due to higher yields per unit area. Rice consistently shows the highest carbon footprint per unit area, followed by wheat, with maize exhibiting the lowest. Carbon footprint per unit yield varies significantly: for rice, it ranges from 0.15 to 0.29 kg CO 2 -eq per kg; for wheat, from 0.19 to 0.22 kg CO 2 -eq per kg; and for maize, from 0.13 to 0.15 kg CO 2 -eq per kg. The distribution of crop production affects these footprints; central regions generally exhibit lower values compared to southwest and southeast areas. Fertilizer and electricity together contribute significantly to carbon emissions, especially in rice production (over 75%), and to a lesser extent in maize and wheat production (approximately 69% and 85%, respectively). Improving fertilizer efficiency, irrigation, and mechanization is crucial for developing low-carbon agriculture in these pivotal grain-producing regions.

Suggested Citation

  • Yunxia Han & Wende Xi & Jing Xu & Guanxin Yao, 2024. "Carbon Footprint of Main Grain Crop Production in Hubei and Jiangsu Provinces, 2005–2019," Sustainability, MDPI, vol. 16(15), pages 1-17, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6449-:d:1444552
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/15/6449/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/15/6449/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xia, Longlong & Chen, Wenhao & Lu, Bufan & Wang, Shanshan & Xiao, Lishan & Liu, Beibei & Yang, Hongqiang & Huang, Chu-Long & Wang, Hongtao & Yang, Yang & Lin, Litao & Zhu, Xiangdong & Chen, Wei-Qiang , 2023. "Climate mitigation potential of sustainable biochar production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    2. Chen, G.Q. & Zhang, Bo, 2010. "Greenhouse gas emissions in China 2007: Inventory and input-output analysis," Energy Policy, Elsevier, vol. 38(10), pages 6180-6193, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yulei Xie & Ling Ji & Beibei Zhang & Gordon Huang, 2018. "Evolution of the Scientific Literature on Input–Output Analysis: A Bibliometric Analysis of 1990–2017," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    2. Wu, X.D. & Guo, J.L. & Chen, G.Q., 2018. "The striking amount of carbon emissions by the construction stage of coal-fired power generation system in China," Energy Policy, Elsevier, vol. 117(C), pages 358-369.
    3. Chen, G.Q. & Chen, Z.M., 2011. "Greenhouse gas emissions and natural resources use by the world economy: Ecological input–output modeling," Ecological Modelling, Elsevier, vol. 222(14), pages 2362-2376.
    4. Xia, X.H. & Hu, Y. & Chen, G.Q. & Alsaedi, A. & Hayat, T. & Wu, X.D., 2015. "Vertical specialization, global trade and energy consumption for an urban economy: A value added export perspective for Beijing," Ecological Modelling, Elsevier, vol. 318(C), pages 49-58.
    5. Chang, Yuan & Huang, Runze & Masanet, Eric, 2014. "The energy, water, and air pollution implications of tapping China's shale gas reserves," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 100-108.
    6. Guo, Shan & Li, Yilin & Hu, Yunhao & Xue, Fan & Chen, Bin & Chen, Zhan-Ming, 2020. "Embodied energy in service industry in global cities: A study of six Asian cities," Land Use Policy, Elsevier, vol. 91(C).
    7. Liu, Zhu & Feng, Kuishuang & Hubacek, Klaus & Liang, Sai & Anadon, Laura Diaz & Zhang, Chao & Guan, Dabo, 2015. "Four system boundaries for carbon accounts," Ecological Modelling, Elsevier, vol. 318(C), pages 118-125.
    8. Qiang Du & Xinran Lu & Yi Li & Min Wu & Libiao Bai & Ming Yu, 2018. "Carbon Emissions in China’s Construction Industry: Calculations, Factors and Regions," IJERPH, MDPI, vol. 15(6), pages 1-17, June.
    9. Zhang, Bo & Chen, Z.M. & Xia, X.H. & Xu, X.Y. & Chen, Y.B., 2013. "The impact of domestic trade on China's regional energy uses: A multi-regional input–output modeling," Energy Policy, Elsevier, vol. 63(C), pages 1169-1181.
    10. Zhang, Bo & Qu, Xue & Meng, Jing & Sun, Xudong, 2017. "Identifying primary energy requirements in structural path analysis: A case study of China 2012," Applied Energy, Elsevier, vol. 191(C), pages 425-435.
    11. Gonzalez-Martinez, Ana Rosa & Jongeneel, Roel & Kros, Hans & Lesschen, Jan Peter & de Vries, Marion & Reijs, Joan & Verhoog, David, 2021. "Aligning agricultural production and environmental regulation: An integrated assessment of the Netherlands," Land Use Policy, Elsevier, vol. 105(C).
    12. Dong, Di & An, Haizhong & Huang, Shupei, 2017. "The transfer of embodied carbon in copper international trade: An industry chain perspective," Resources Policy, Elsevier, vol. 52(C), pages 173-180.
    13. Ozturk, Fatma & Keles, Melek & Evrendilek, Fatih, 2016. "Quantifying rates and drivers of change in long-term sector- and country-specific trends of carbon dioxide-equivalent greenhouse gas emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 823-831.
    14. Wu, X.D. & Chen, G.Q., 2017. "Energy and water nexus in power generation: The surprisingly high amount of industrial water use induced by solar power infrastructure in China," Applied Energy, Elsevier, vol. 195(C), pages 125-136.
    15. Dong, Gang & Mao, Xianqiang & Zhou, Ji & Zeng, An, 2013. "Carbon footprint accounting and dynamics and the driving forces of agricultural production in Zhejiang Province, China," Ecological Economics, Elsevier, vol. 91(C), pages 38-47.
    16. Ali, Ghaffar & Pumijumnong, Nathsuda & Cui, Shenghui, 2018. "Valuation and validation of carbon sources and sinks through land cover/use change analysis: The case of Bangkok metropolitan area," Land Use Policy, Elsevier, vol. 70(C), pages 471-478.
    17. Das, Aparna & Paul, Saikat Kumar, 2014. "CO2 emissions from household consumption in India between 1993–94 and 2006–07: A decomposition analysis," Energy Economics, Elsevier, vol. 41(C), pages 90-105.
    18. Su, Shenshen & Fang, Xuekun & Zhao, Jinyang & Hu, Jianxin, 2017. "Spatiotemporal characteristics of consumption based CO2 emissions from China’s power sector," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 156-163.
    19. Yang, Q. & Chen, G.Q., 2013. "Greenhouse gas emissions of corn–ethanol production in China," Ecological Modelling, Elsevier, vol. 252(C), pages 176-184.
    20. Yang, Jin & Chen, Bin, 2014. "Carbon footprint estimation of Chinese economic sectors based on a three-tier model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 499-507.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6449-:d:1444552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.