IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i14p6141-d1437838.html
   My bibliography  Save this article

Unraveling the Interactions between Flooding Dynamics and Agricultural Productivity in a Changing Climate

Author

Listed:
  • Thidarat Rupngam

    (Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, 6947 Highway 7, P.O. Box 1000, Agassiz, BC V0M 1A0, Canada
    Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
    Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand)

  • Aimé J. Messiga

    (Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, 6947 Highway 7, P.O. Box 1000, Agassiz, BC V0M 1A0, Canada)

Abstract

Extreme precipitation and flooding frequency associated with global climate change are expected to increase worldwide, with major consequences in floodplains and areas susceptible to flooding. The purpose of this review was to examine the effects of flooding events on changes in soil properties and their consequences on agricultural production. Flooding is caused by natural and anthropogenic factors, and their effects can be amplified by interactions between rainfall and catchments. Flooding impacts soil structure and aggregation by altering the resistance of soil to slaking, which occurs when aggregates are not strong enough to withstand internal stresses caused by rapid water uptake. The disruption of soil aggregates can enhance soil erosion and sediment transport during flooding events and contribute to the sedimentation of water bodies and the degradation of aquatic ecosystems. Total precipitation, flood discharge, and total water are the main factors controlling suspended mineral-associated organic matter, dissolved organic matter, and particulate organic matter loads. Studies conducted in paddy rice cultivation show that flooded and reduced conditions neutralize soil pH but changes in pH are reversible upon draining the soil. In flooded soil, changes in nitrogen cycling are linked to decreases in oxygen, the accumulation of ammonium, and the volatilization of ammonia. Ammonium is the primary form of dissolved inorganic nitrogen in sediment porewaters. In floodplains, nitrate removal can be enhanced by high denitrification when intermittent flooding provides the necessary anaerobic conditions. In flooded soils, the reductive dissolution of minerals can release phosphorus (P) into the soil solution. Phosphorus can be mobilized during flood events, leading to increased availability during the first weeks of waterlogging, but this availability generally decreases with time. Rainstorms can promote the subsurface transport of P-enriched soil particles, and colloidal P can account for up to 64% of total P in tile drainage water. Anaerobic microorganisms prevailing in flooded soil utilize alternate electron acceptors, such as nitrate, sulfate, and carbon dioxide, for energy production and organic matter decomposition. Anaerobic metabolism leads to the production of fermentation by-products, such as organic acids, methane, and hydrogen sulfide, influencing soil pH, redox potential, and nutrient availability. Soil enzyme activity and the presence of various microbial groups, including Gram+ and Gram− bacteria and mycorrhizal fungi, are affected by flooding. Waterlogging decreases the activity of β-glucosidase and acid phosphomonoesterase but increases N -acetyl-β-glucosaminidase in soil. Since these enzymes control the hydrolysis of cellulose, phosphomonoesters, and chitin, soil moisture content can impact the direction and magnitude of nutrient release and availability. The supply of oxygen to submerged plants is limited because its diffusion in water is extremely low, and this impacts mitochondrial respiration in flooded plant tissues. Fermentation is the only viable pathway for energy production in flooded plants, which, under prolonged waterlogging conditions, is inefficient and results in plant death. Seed germination is also impaired under flooding stress due to decreased sugar and phytohormone biosynthesis. The sensitivity of different crops to waterlogging varies significantly across growth stages. Mitigation and adaptation strategies, essential to the management of flooding impacts on agriculture, enhance resilience to climate change through improved drainage and water management practices, soil amendments and rehabilitation techniques, best management practices, such as zero tillage and cover crops, and the development of flood-tolerant crop varieties. Technological advances play a crucial role in assessing flooding dynamics and impacts on crop production in agricultural landscapes. This review embarks on a comprehensive journey through existing research to unravel the intricate interplay between flooding events, agricultural soil, crop production, and the environment. We also synthesize available knowledge to address critical gaps in understanding, identify methodological challenges, and propose future research directions.

Suggested Citation

  • Thidarat Rupngam & Aimé J. Messiga, 2024. "Unraveling the Interactions between Flooding Dynamics and Agricultural Productivity in a Changing Climate," Sustainability, MDPI, vol. 16(14), pages 1-24, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:6141-:d:1437838
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/14/6141/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/14/6141/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Salazar, Osvaldo & Vargas, Juan & Nájera, Francisco & Seguel, Oscar & Casanova, Manuel, 2014. "Monitoring of nitrate leaching during flush flooding events in a coarse-textured floodplain soil," Agricultural Water Management, Elsevier, vol. 146(C), pages 218-227.
    2. Badri Bhakta Shrestha & Edangodage Duminda Pradeep Perera & Shun Kudo & Mamoru Miyamoto & Yusuke Yamazaki & Daisuke Kuribayashi & Hisaya Sawano & Takahiro Sayama & Jun Magome & Akira Hasegawa & Tomoki, 2019. "Assessing flood disaster impacts in agriculture under climate change in the river basins of Southeast Asia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(1), pages 157-192, May.
    3. Huang, Chao & Gao, Yang & Qin, Anzhen & Liu, Zugui & Zhao, Ben & Ning, Dongfeng & Ma, Shoutian & Duan, Aiwang & Liu, Zhandong, 2022. "Effects of waterlogging at different stages and durations on maize growth and grain yields," Agricultural Water Management, Elsevier, vol. 261(C).
    4. Abdullah O. Dakhlalla & Prem B. Parajuli, 2016. "Evaluation of the Best Management Practices at the Watershed Scale to Attenuate Peak Streamflow Under Climate Change Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 963-982, February.
    5. Daniel R. Hirmas & Daniel Giménez & Attila Nemes & Ruth Kerry & Nathaniel A. Brunsell & Cassandra J. Wilson, 2018. "Climate-induced changes in continental-scale soil macroporosity may intensify water cycle," Nature, Nature, vol. 561(7721), pages 100-103, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mérel, Pierre & Paroissien, Emmanuel & Gammans, Matthew, 2024. "Sufficient statistics for climate change counterfactuals," Journal of Environmental Economics and Management, Elsevier, vol. 124(C).
    2. Yang, Lin & Pang, Shujiang & Wang, Xiaoyan & Du, Yi & Huang, Jieyu & Melching, Charles S., 2021. "Optimal allocation of best management practices based on receiving water capacity constraints," Agricultural Water Management, Elsevier, vol. 258(C).
    3. Prem B. Parajuli & Priyantha Jayakody & Ying Ouyang, 2018. "Evaluation of Using Remote Sensing Evapotranspiration Data in SWAT," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 985-996, February.
    4. Julien Boulange & Yukiko Hirabayashi & Masahiro Tanoue & Toshinori Yamada, 2023. "Quantitative evaluation of flood damage methodologies under a portfolio of adaptation scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 1855-1879, September.
    5. Haoze Zhang & Mingliang Gao & Fuying Liu & Huabin Yuan & Zhendong Liu & Mingming Zhang & Quanqi Li & Rui Zong, 2024. "Characteristic of soil moisture utilisation with different water-sensitive cultivars of summer maize in the North China Plain," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 70(4), pages 210-219.
    6. Cabrera Corral, Francisco Javier & Bonachela Castaño, Santiago & Fernández Fernández, María Dolores & Granados García, María Rosa & López Hernández, Juan Carlos, 2016. "Lysimetry methods for monitoring soil solution electrical conductivity and nutrient concentration in greenhouse tomato crops," Agricultural Water Management, Elsevier, vol. 178(C), pages 171-179.
    7. Junyu Qi & Sheng Li & Qiang Li & Zisheng Xing & Charles P.-A. Bourque & Fan-Rui Meng, 2016. "Assessing an Enhanced Version of SWAT on Water Quantity and Quality Simulation in Regions with Seasonal Snow Cover," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5021-5037, November.
    8. Ricci, Giovanni Francesco & D’Ambrosio, Ersilia & De Girolamo, Anna Maria & Gentile, Francesco, 2022. "Efficiency and feasibility of Best Management Practices to reduce nutrient loads in an agricultural river basin," Agricultural Water Management, Elsevier, vol. 259(C).
    9. Huang, Chao & Zhang, Weiqiang & Wang, Hui & Gao, Yang & Ma, Shoutian & Qin, Anzhen & Liu, Zugui & Zhao, Ben & Ning, Dongfeng & Zheng, Hongjian & Liu, Zhandong, 2022. "Effects of waterlogging at different stages on growth and ear quality of waxy maize," Agricultural Water Management, Elsevier, vol. 266(C).
    10. Fajar Yulianto & Muhammad Rokhis Khomarudin & Eddy Hermawan & Syarif Budhiman & Parwati Sofan & Galdita Aruba Chulafak & Nunung Puji Nugroho & Randy Prima Brahmantara & Gatot Nugroho & Suwarsono Suwar, 2023. "The development of the Raster-based Probability Flood Inundation Model (RProFIM) approach for flood modelling in the upstream Citarum Watershed, West Java, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1887-1922, June.
    11. Wapee Manopiniwes & Takashi Irohara, 2021. "Optimization model for temporary depot problem in flood disaster response," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1743-1763, January.
    12. Liu, Cong & Li, Kaiwei & Zhang, Jiquan & Guga, Suri & Wang, Rui & Liu, Xingpeng & Tong, Zhijun, 2023. "Dynamic risk assessment of waterlogging disaster to spring peanut (Arachis hypogaea L.) in Henan Province, China," Agricultural Water Management, Elsevier, vol. 277(C).
    13. Beatrice Monteleone & Iolanda Borzí & Brunella Bonaccorso & Mario Martina, 2023. "Quantifying crop vulnerability to weather-related extreme events and climate change through vulnerability curves," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2761-2796, April.
    14. Tengku Mohamad Amirulhakimi Tengku Mohd Hazrin & Suhaimi Abd Samad & Hazlina Mohd Padil & Radduan Yusof & Mazlan Che Soh & Eley Suzana Kasim & Mohd Hairy Ibrahim, 2024. "Content Analysis of Flood Relief Efforts: Examining Coping and Recovery Themes in Resilience Narrative Analysis," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(6), pages 32-45, June.
    15. Pinheiro, Everton Alves Rodrigues & de Jong van Lier, Quirijn & Šimůnek, Jirka, 2019. "The role of soil hydraulic properties in crop water use efficiency: A process-based analysis for some Brazilian scenarios," Agricultural Systems, Elsevier, vol. 173(C), pages 364-377.
    16. Heather Craig & Ryan Paulik & Utkur Djanibekov & Patrick Walsh & Alec Wild & Benjamin Popovich, 2021. "Quantifying National-Scale Changes in Agricultural Land Exposure to Fluvial Flooding," Sustainability, MDPI, vol. 13(22), pages 1-16, November.
    17. repec:caa:jnlpse:v:preprint:id:401-2023-pse is not listed on IDEAS
    18. Pollyana Mona Soares Dias & Jeane Cruz Portela & Joaquim Emanuel Fernandes Gondim & Rafael Oliveira Batista & Leticia Sequinatto Rossi & Jonatan Levi Ferreira Medeiros & Phâmella Kalliny Pereira Faria, 2023. "Soil Attributes and Their Interrelationships with Resistance to Root Penetration and Water Infiltration in Areas with Different Land Uses in the Apodi Plateau, Semiarid Region of Brazil," Agriculture, MDPI, vol. 13(10), pages 1-24, September.
    19. Ping Li & Rebecca L. Muenich & Indrajeet Chaubey & Xiaomei Wei, 2019. "Evaluating Agricultural BMP Effectiveness in Improving Freshwater Provisioning Under Changing Climate," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 453-473, January.
    20. Tugkan Tanir & Andre de Souza de Lima & Gustavo A. Coelho & Sukru Uzun & Felicio Cassalho & Celso M. Ferreira, 2021. "Assessing the spatiotemporal socioeconomic flood vulnerability of agricultural communities in the Potomac River Watershed," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 225-251, August.
    21. He, Pingru & Yu, Shuang’en & Ding, Jihui & Ma, Tao & Li, Jin’gang & Dai, Yan & Chen, Kaiwen & Peng, Suhan & Zeng, Guangquan & Guo, Shuaishuai, 2024. "Multi-objective optimization of farmland water level and nitrogen fertilization management for winter wheat cultivation under waterlogging conditions based on TOPSIS-Entropy," Agricultural Water Management, Elsevier, vol. 297(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:6141-:d:1437838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.