IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i14p5900-d1432772.html
   My bibliography  Save this article

Diverse Responses of Vegetation Greenness and Productivity to Land Use and Climate Change: A Comparison of Three Urban Agglomerations in China

Author

Listed:
  • Fei Xue

    (School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China)

  • Yi’na Hu

    (School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
    Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai 201722, China)

Abstract

Vegetation plays a crucial role in enhancing residents’ quality of life, especially in densely populated urban areas. However, previous research has rarely explored the inconsistency between vegetation greenness and productivity or its potential factors, leaving the reasons for their inconsistency unclear. Taking the three largest urban agglomerations in China as study areas, this study examined the inconsistency between vegetation greenness (LAI) and productivity (GPP) after detecting their dynamics based on the Mann–Kendall test. Then, the impact of land use change on the observed inconsistency was explored by contrasting the variations in vegetation greenness and productivity between regions with and without land use changes. The effect of climate change was evaluated by the Spearman correlation method at the pixel level. The results showed that both vegetation greenness and productivity exhibited a rising trend in three agglomerations from 2001 to 2020. Notably, an obvious inconsistency existed between greenness and productivity. Regions with a consistent change in greenness and productivity accounted for 69.87% in Beijing–Tianjin–Hebei (BTH), while only 45.65% and 42.93% in the Pearl River Delta (PRD) and the Yangtze River Delta (YRD), respectively. Land use change and climate change exerted divergent impacts on greenness and productivity across these agglomerations. The conversion of croplands and grasslands to construction lands had a more severe negative effect on vegetation greenness than on productivity in all regions. However, this transition led to a general decline in both greenness and productivity in the YRD and PRD, whereas in BTH, greenness declined while productivity paradoxically increased. As for climatic factors, the responses of greenness and productivity to rainfall and solar radiation exhibited spatial heterogeneity among the three agglomerations. In the YRD and PRD, they had a negative correlation with rainfall and a positive correlation with solar radiation, whereas in BTH, these correlations were reversed. Our spatial comparative analysis provided insights into the inconsistency between vegetation greenness and productivity as well as their potential reasons, offering a fresh perspective for regional vegetation research.

Suggested Citation

  • Fei Xue & Yi’na Hu, 2024. "Diverse Responses of Vegetation Greenness and Productivity to Land Use and Climate Change: A Comparison of Three Urban Agglomerations in China," Sustainability, MDPI, vol. 16(14), pages 1-14, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:5900-:d:1432772
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/14/5900/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/14/5900/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter M. Cox & David Pearson & Ben B. Booth & Pierre Friedlingstein & Chris Huntingford & Chris D. Jones & Catherine M. Luke, 2013. "Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability," Nature, Nature, vol. 494(7437), pages 341-344, February.
    2. Karl-Heinz Erb & Thomas Kastner & Christoph Plutzar & Anna Liza S. Bais & Nuno Carvalhais & Tamara Fetzel & Simone Gingrich & Helmut Haberl & Christian Lauk & Maria Niedertscheider & Julia Pongratz & , 2018. "Unexpectedly large impact of forest management and grazing on global vegetation biomass," Nature, Nature, vol. 553(7686), pages 73-76, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lihan Cui & Wenwen Tang & Sheng Zheng & Ramesh P. Singh, 2022. "Ecological Protection Alone Is Not Enough to Conserve Ecosystem Carbon Storage: Evidence from Guangdong, China," Land, MDPI, vol. 12(1), pages 1-16, December.
    2. Yue Li & Paulo M. Brando & Douglas C. Morton & David M. Lawrence & Hui Yang & James T. Randerson, 2022. "Deforestation-induced climate change reduces carbon storage in remaining tropical forests," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Parwati Sofan & Yenni Vetrita & Fajar Yulianto & Muhammad Khomarudin, 2016. "Multi-temporal remote sensing data and spectral indices analysis for detection tropical rainforest degradation: case study in Kapuas Hulu and Sintang districts, West Kalimantan, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 1279-1301, January.
    4. Myrgiotis, Vasileios & Blei, Emanuel & Clement, Rob & Jones, Stephanie K. & Keane, Ben & Lee, Mark A. & Levy, Peter E. & Rees, Robert M. & Skiba, Ute M. & Smallman, Thomas Luke & Toet, Sylvia & Willia, 2020. "A model-data fusion approach to analyse carbon dynamics in managed grasslands," Agricultural Systems, Elsevier, vol. 184(C).
    5. Jing Peng & Li Dan & Jinming Feng & Kairan Ying & Xiba Tang & Fuqiang Yang, 2021. "Absolute Contribution of the Non-Uniform Spatial Distribution of Atmospheric CO 2 to Net Primary Production through CO 2 -Radiative Forcing," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
    6. Beverly E. Law & William R. Moomaw & Tara W. Hudiburg & William H. Schlesinger & John D. Sterman & George M. Woodwell, 2022. "Creating Strategic Reserves to Protect Forest Carbon and Reduce Biodiversity Losses in the United States," Land, MDPI, vol. 11(5), pages 1-15, May.
    7. David P. Rowell & Catherine A. Senior & Michael Vellinga & Richard J. Graham, 2016. "Can climate projection uncertainty be constrained over Africa using metrics of contemporary performance?," Climatic Change, Springer, vol. 134(4), pages 621-633, February.
    8. Lei Chang & Han Luo & Huijia Liu & Wenxin Xu & Lixin Zhang & Yuefen Li, 2024. "Tracking Land-use Trajectory and Other Potential Drivers to Uncover the Dynamics of Carbon Stocks of Terrestrial Ecosystem in the Songnen Plain," Land, MDPI, vol. 13(5), pages 1-20, May.
    9. Xiangzhong Luo & Trevor F. Keenan, 2022. "Tropical extreme droughts drive long-term increase in atmospheric CO2 growth rate variability," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Suman Paudel & Gustavo A. Ovando-Montejo & Christopher L. Lant, 2021. "Human Appropriation of Net Primary Production: From a Planet to a Pixel," Sustainability, MDPI, vol. 13(15), pages 1-12, August.
    11. Chen, Yizhao & Fei, Xinran & Groisman, Pavel & Sun, Zhengguo & Zhang, Jianan & Qin, Zhihao, 2019. "Contrasting policy shifts influence the pattern of vegetation production and C sequestration over pasture systems: A regional-scale comparison in Temperate Eurasian Steppe," Agricultural Systems, Elsevier, vol. 176(C).
    12. Yanchun Liu & Qing Shang & Bo Zhang & Kesheng Zhang & Junwei Luan, 2017. "Effects of Understory Liana Trachelospermum jasminoides on Distributions of Litterfall and Soil Organic Carbon in an Oak Forest in Central China," Sustainability, MDPI, vol. 9(6), pages 1-11, June.
    13. Wehrle, Sebastian & Gruber, Katharina & Schmidt, Johannes, 2021. "The cost of undisturbed landscapes," Energy Policy, Elsevier, vol. 159(C).
    14. Manan Bhan & Simone Gingrich & Sarah Matej & Steffen Fritz & Karl-Heinz Erb, 2021. "Land Use Increases the Correlation between Tree Cover and Biomass Carbon Stocks in the Global Tropics," Land, MDPI, vol. 10(11), pages 1-15, November.
    15. Julia Noë & Karl-Heinz Erb & Sarah Matej & Andreas Magerl & Manan Bhan & Simone Gingrich, 2021. "Altered growth conditions more than reforestation counteracted forest biomass carbon emissions 1990–2020," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    16. Daigneault, Adam & Simons-Legaard, Erin & Weiskittel, Aaron, 2024. "Tradeoffs and synergies of optimized management for maximizing carbon sequestration across complex landscapes and diverse ecosystem services," Forest Policy and Economics, Elsevier, vol. 161(C).
    17. J. Dunlap & J. R. Schramski, 2024. "An Energy Analysis of Managed Forestry Systems: Accounting for Foregone Biomass as an Indicator of Ecosystem Impact Alongside Conventional Energy Metrics," Biophysical Economics and Resource Quality, Springer, vol. 9(3), pages 1-13, September.
    18. Kailiang Yu & Philippe Ciais & Sonia I. Seneviratne & Zhihua Liu & Han Y. H. Chen & Jonathan Barichivich & Craig D. Allen & Hui Yang & Yuanyuan Huang & Ashley P. Ballantyne, 2022. "Field-based tree mortality constraint reduces estimates of model-projected forest carbon sinks," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Peng, Jing & Dan, Li, 2015. "Impacts of CO2 concentration and climate change on the terrestrial carbon flux using six global climate–carbon coupled models," Ecological Modelling, Elsevier, vol. 304(C), pages 69-83.
    20. Hou, Dawei & Meng, Fanhao & Ji, Chao & Xie, Li & Zhu, Wenjuan & Wang, Shizhong & Sun, Hua, 2022. "Linking food production and environmental outcomes: An application of a modified relative risk model to prioritize land-management practices," Agricultural Systems, Elsevier, vol. 196(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:5900-:d:1432772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.