IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i14p5830-d1431411.html
   My bibliography  Save this article

Optimal Design of Truss Structures for Sustainable Carbon Emission Reduction in Korean Construction

Author

Listed:
  • Donwoo Lee

    (School of Industrial Design & Architectural Engineering, Korea University of Technology & Education, 1600 Chungjeol-ro, Byeongcheon-myeon, Cheonan 31253, Republic of Korea)

  • Jeonghyun Kim

    (Faculty of Civil Engineering, Wroclaw University of Science and Technology, 27 Wybrzeze Stanislawa, Wyspianskiego St., 50-370 Wroclaw, Poland)

  • Seungjae Lee

    (School of Industrial Design & Architectural Engineering, Korea University of Technology & Education, 1600 Chungjeol-ro, Byeongcheon-myeon, Cheonan 31253, Republic of Korea)

Abstract

Due to the recent abnormalities in global temperature and increasing carbon emissions, the world is working to reduce carbon emissions. In particular, the construction sector accounts for about 37% of all carbon emissions, so it is one of the areas where sustainable reduction efforts must be made. Therefore, in this paper, an optimal design process was performed by evaluating carbon emissions as the objective function, a choice which differed from the objective function of the existing research used in the optimal design of truss structures. The metaheuristics algorithm used for the process was the advanced crow search algorithm. The levels of carbon emissions generated when the material of a truss structure consisted of a customary material (steel) were compared to scenarios in which timber was used, and a construction scenario centered on the Republic of Korea was established for comparison. The structures used as examples were 10-, 17-, 22-, and 120-bar truss structures. As a result, it was confirmed that truss structures using timber had fewer carbon emissions than structures using steel. In addition, it was confirmed that, even in the same timber structures, domestic timber had fewer carbon emissions than imported timber. These results confirmed that in order to achieve carbon neutrality in the construction field, carbon emissions must be considered in advance, in the design stage.

Suggested Citation

  • Donwoo Lee & Jeonghyun Kim & Seungjae Lee, 2024. "Optimal Design of Truss Structures for Sustainable Carbon Emission Reduction in Korean Construction," Sustainability, MDPI, vol. 16(14), pages 1-17, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:5830-:d:1431411
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/14/5830/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/14/5830/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei, Wu & Skye, Harrison M., 2021. "Residential net-zero energy buildings: Review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Despoina Antypa & Foteini Petrakli & Anastasia Gkika & Pamela Voigt & Alexander Kahnt & Robert Böhm & Jan Suchorzewski & Andreia Araújo & Susana Sousa & Elias P. Koumoulos, 2022. "Life Cycle Assessment of Advanced Building Components towards NZEBs," Sustainability, MDPI, vol. 14(23), pages 1-20, December.
    2. Haleh Moghaddasi & Charles Culp & Jorge Vanegas & Saptarshi Das & Mehrdad Ehsani, 2022. "An Adaptable Net Zero Model: Energy Analysis of a Monitored Case Study," Energies, MDPI, vol. 15(11), pages 1-24, May.
    3. Yan, Tian & Zhou, Xuan & Xu, Xinhua & Yu, Jinghua & Li, Xianting, 2022. "Parametric analysis on performances of the pipe-encapsulated PCM (PenPCM) wall system coupled with gravity heat-pipe and nocturnal radiant cooler," Renewable Energy, Elsevier, vol. 196(C), pages 161-180.
    4. Ji, Qiang & Han, Zongwei & Li, Xiuming & Yang, Lingyan, 2022. "Energy and economic evaluation of the air source hybrid heating system driven by off-peak electric thermal storage in cold regions," Renewable Energy, Elsevier, vol. 182(C), pages 69-85.
    5. Seyed Mehdi Alizadeh & Yasin Khalili & Mohammad Ahmadi, 2024. "Comprehensive Review of Carbon Capture and Storage Integration in Hydrogen Production: Opportunities, Challenges, and Future Perspectives," Energies, MDPI, vol. 17(21), pages 1-35, October.
    6. Ceylin Şirin & Azim Doğuş Tuncer & Ataollah Khanlari, 2023. "Improving the Performance of Unglazed Solar Air Heating Walls Using Mesh Packing and Nano-Enhanced Absorber Coating: An Energy–Exergy and Enviro-Economic Assessment," Sustainability, MDPI, vol. 15(21), pages 1-17, October.
    7. Ma, Qijie & Wang, Peijun & Fan, Jianhua & Klar, Assaf, 2022. "Underground solar energy storage via energy piles: An experimental study," Applied Energy, Elsevier, vol. 306(PB).
    8. Haleh Moghaddasi & Charles Culp & Jorge Vanegas & Mehrdad Ehsani, 2021. "Net Zero Energy Buildings: Variations, Clarifications, and Requirements in Response to the Paris Agreement," Energies, MDPI, vol. 14(13), pages 1-21, June.
    9. Ohlsson, K.E. Anders & Nair, Gireesh & Olofsson, Thomas, 2022. "Uncertainty in model prediction of energy savings in building retrofits: Case of thermal transmittance of windows," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Li, Y. & Arulnathan, V. & Heidari, M.D. & Pelletier, N., 2022. "Design considerations for net zero energy buildings for intensive, confined poultry production: A review of current insights, knowledge gaps, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    11. Alvaro Llaria & Jessye Dos Santos & Guillaume Terrasson & Zina Boussaada & Christophe Merlo & Octavian Curea, 2021. "Intelligent Buildings in Smart Grids: A Survey on Security and Privacy Issues Related to Energy Management," Energies, MDPI, vol. 14(9), pages 1-37, May.
    12. Saman Abolghasemi Moghaddam & Catarina Serra & Manuel Gameiro da Silva & Nuno Simões, 2023. "Comprehensive Review and Analysis of Glazing Systems towards Nearly Zero-Energy Buildings: Energy Performance, Thermal Comfort, Cost-Effectiveness, and Environmental Impact Perspectives," Energies, MDPI, vol. 16(17), pages 1-30, August.
    13. Andrea Aquino & Flavio Scrucca & Emanuele Bonamente, 2021. "Sustainability of Shallow Geothermal Energy for Building Air-Conditioning," Energies, MDPI, vol. 14(21), pages 1-30, October.
    14. Elżbieta Jadwiga Szymańska & Maria Kubacka & Joanna Woźniak & Jan Polaszczyk, 2022. "Analysis of Residential Buildings in Poland for Potential Energy Renovation toward Zero-Emission Construction," Energies, MDPI, vol. 15(24), pages 1-24, December.
    15. Karel Struhala & Milan Ostrý, 2021. "Life-Cycle Assessment of a Rural Terraced House: A Struggle with Sustainability of Building Renovations," Energies, MDPI, vol. 14(9), pages 1-18, April.
    16. Maestre, V.M. & Ortiz, A. & Ortiz, I., 2021. "Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    17. Sihan Zhou & Lijie Zhu & Runan Wan & Tao Zhang & Yongzheng Zhang & Yi Zhan & Fang Wang & Linfeng Zhang & Tian You, 2023. "An Overview of Sandbox Experiment on Ground Heat Exchangers," Sustainability, MDPI, vol. 15(14), pages 1-39, July.
    18. Rezaeimozafar, Mostafa & Monaghan, Rory F.D. & Barrett, Enda & Duffy, Maeve, 2022. "A review of behind-the-meter energy storage systems in smart grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    19. Shabbir, Noman & Kütt, Lauri & Raja, Hadi A. & Jawad, Muhammad & Allik, Alo & Husev, Oleksandr, 2022. "Techno-economic analysis and energy forecasting study of domestic and commercial photovoltaic system installations in Estonia," Energy, Elsevier, vol. 253(C).
    20. Córcoles, Carmen & López, Luis Antonio & Osorio, Pilar & Zafrilla, Jorge, 2024. "The carbon footprint of the empty Castilla-La Mancha," Energy Policy, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:5830-:d:1431411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.