Practice of a Load Shifting Algorithm for Enhancing Community-Scale RES Utilization
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Gottwalt, Sebastian & Ketter, Wolfgang & Block, Carsten & Collins, John & Weinhardt, Christof, 2011. "Demand side management—A simulation of household behavior under variable prices," Energy Policy, Elsevier, vol. 39(12), pages 8163-8174.
- Petrucci, Andrea & Ayevide, Follivi Kloutse & Buonomano, Annamaria & Athienitis, Andreas, 2023. "Development of energy aggregators for virtual communities: The energy efficiency-flexibility nexus for demand response," Renewable Energy, Elsevier, vol. 215(C).
- Thiaux, Yaël & Dang, Thu Thuy & Schmerber, Louis & Multon, Bernard & Ben Ahmed, Hamid & Bacha, Seddik & Tran, Quoc Tuan, 2019. "Demand-side management strategy in stand-alone hybrid photovoltaic systems with real-time simulation of stochastic electricity consumption behavior," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Clift, Dean Holland & Hasan, Kazi N. & Rosengarten, Gary, 2024. "Peer-to-peer energy trading for demand response of residential smart electric storage water heaters," Applied Energy, Elsevier, vol. 353(PB).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Feuerriegel, Stefan & Neumann, Dirk, 2014. "Measuring the financial impact of demand response for electricity retailers," Energy Policy, Elsevier, vol. 65(C), pages 359-368.
- Y, Kiguchi & Y, Heo & M, Weeks & R, Choudhary, 2019. "Predicting intra-day load profiles under time-of-use tariffs using smart meter data," Energy, Elsevier, vol. 173(C), pages 959-970.
- Fridgen, Gilbert & Kahlen, Micha & Ketter, Wolfgang & Rieger, Alexander & Thimmel, Markus, 2018. "One rate does not fit all: An empirical analysis of electricity tariffs for residential microgrids," Applied Energy, Elsevier, vol. 210(C), pages 800-814.
- Meng, Qinglong & Wei, Ying'an & Fan, Jingjing & Li, Yanbo & Zhao, Fan & Lei, Yu & Sun, Hang & Jiang, Le & Yu, Lingli, 2024. "Peak regulation strategies for ground source heat pump demand response of based on load forecasting: A case study of rural building in China," Renewable Energy, Elsevier, vol. 224(C).
- Freier, Julia & von Loessl, Victor, 2022. "Dynamic electricity tariffs: Designing reasonable pricing schemes for private households," Energy Economics, Elsevier, vol. 112(C).
- Gilbraith, Nathaniel & Powers, Susan E., 2013. "Residential demand response reduces air pollutant emissions on peak electricity demand days in New York City," Energy Policy, Elsevier, vol. 59(C), pages 459-469.
- Shinichi Taniguchi, 2020. "Examining the causality structures of electricity interchange and variable renewable energy: a comparison between Japan and Denmark," Asia-Pacific Journal of Regional Science, Springer, vol. 4(1), pages 159-191, February.
- Chen Wang & Kaile Zhou & Lanlan Li & Shanlin Yang, 2018. "Multi-agent simulation-based residential electricity pricing schemes design and user selection decision-making," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1309-1327, February.
- Andruszkiewicz, Jerzy & Lorenc, Józef & Weychan, Agnieszka, 2020. "Seasonal variability of price elasticity of demand of households using zonal tariffs and its impact on hourly load of the power system," Energy, Elsevier, vol. 196(C).
- Ensslen, Axel & Ringler, Philipp & Dörr, Lasse & Jochem, Patrick & Zimmermann, Florian & Fichtner, Wolf, 2018. "Incentivizing smart charging: Modeling charging tariffs for electric vehicles in German and French electricity markets," MPRA Paper 91543, University Library of Munich, Germany, revised 17 Feb 2018.
- Wang, Yong & Li, Lin, 2015. "Time-of-use electricity pricing for industrial customers: A survey of U.S. utilities," Applied Energy, Elsevier, vol. 149(C), pages 89-103.
- Mauser, Ingo & Müller, Jan & Allerding, Florian & Schmeck, Hartmut, 2016. "Adaptive building energy management with multiple commodities and flexible evolutionary optimization," Renewable Energy, Elsevier, vol. 87(P2), pages 911-921.
- Chattopadhyay, Kabitri & Kies, Alexander & Lorenz, Elke & von Bremen, Lüder & Heinemann, Detlev, 2017. "The impact of different PV module configurations on storage and additional balancing needs for a fully renewable European power system," Renewable Energy, Elsevier, vol. 113(C), pages 176-189.
- Woo, C.K. & Sreedharan, P. & Hargreaves, J. & Kahrl, F. & Wang, J. & Horowitz, I., 2014. "A review of electricity product differentiation," Applied Energy, Elsevier, vol. 114(C), pages 262-272.
- Lucas Roth & Jens Lowitzsch & Özgür Yildiz, 2021. "An Empirical Study of How Household Energy Consumption Is Affected by Co-Owning Different Technological Means to Produce Renewable Energy and the Production Purpose," Energies, MDPI, vol. 14(13), pages 1-38, July.
- Martínez Ceseña, Eduardo A. & Good, Nicholas & Mancarella, Pierluigi, 2015. "Electrical network capacity support from demand side response: Techno-economic assessment of potential business cases for small commercial and residential end-users," Energy Policy, Elsevier, vol. 82(C), pages 222-232.
- Torriti, Jacopo, 2012. "Demand Side Management for the European Supergrid: Occupancy variances of European single-person households," Energy Policy, Elsevier, vol. 44(C), pages 199-206.
- Ali Ghofrani & Esmat Zaidan & Mohsen Jafari, 2021. "Reshaping energy policy based on social and human dimensions: an analysis of human-building interactions among societies in transition in GCC countries," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-26, December.
- Venizelou, Venizelos & Philippou, Nikolas & Hadjipanayi, Maria & Makrides, George & Efthymiou, Venizelos & Georghiou, George E., 2018. "Development of a novel time-of-use tariff algorithm for residential prosumer price-based demand side management," Energy, Elsevier, vol. 142(C), pages 633-646.
- El-Baz, Wessam & Tzscheutschler, Peter, 2015. "Short-term smart learning electrical load prediction algorithm for home energy management systems," Applied Energy, Elsevier, vol. 147(C), pages 10-19.
More about this item
Keywords
demand side management; load shifting; energy communities; renewable energy sources;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5679-:d:1428132. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.