IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i13p5665-d1427846.html
   My bibliography  Save this article

Development of a System Suitable for an Apartment Complex for the Collective Recovery of Solid Resources from Food Waste: A Study on South Korea

Author

Listed:
  • Yong-Woo Jeon

    (Environmental Technology Division, Korea Testing Laboratory, Seoul 08389, Republic of Korea)

Abstract

The installation of food waste disposers has been prohibited in South Korea, due to conflicts with governmental policies that are focused on resource recovery from food waste and concerns about potential damage to the city’s sewer system. However, there is a growing demand for such systems in the country. This study proposes a system for the collective recovery of solid resources from food waste tailored for apartment complexes in South Korea, using an innovative solid–liquid separation technology. In the pilot experiment, 49.60% of the solids fed into the system were recovered as solid matter, confirming its practical applicability. Ultimately, a solid resource collective recovery system suitable for the high-rise apartment residence style of South Korea was developed and applied to an actual apartment complex. The final-stage solids were discharged from the system and processed through bio-drying, subsequently exhibiting a combustible material content of 67.06%, higher heating value (HHV) of 4843 kcal/kg, and lower heating value (LHV) of 3759 kcal/kg; moreover, they have the potential to be repurposed as biomass–solid refuse fuel (bio-SFR), compost, feed, and substrate for biogas production. The proposed food waste disposal system not only aligns with governmental policies, but also facilitates the recovery of high-quality resources from food waste, while providing a sustainable waste management solution.

Suggested Citation

  • Yong-Woo Jeon, 2024. "Development of a System Suitable for an Apartment Complex for the Collective Recovery of Solid Resources from Food Waste: A Study on South Korea," Sustainability, MDPI, vol. 16(13), pages 1-17, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5665-:d:1427846
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/13/5665/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/13/5665/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Browne, James D. & Murphy, Jerry D., 2013. "Assessment of the resource associated with biomethane from food waste," Applied Energy, Elsevier, vol. 104(C), pages 170-177.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Triolo, Jin M. & Ward, Alastair J. & Pedersen, Lene & Løkke, Mette M. & Qu, Haiyan & Sommer, Sven G., 2014. "Near Infrared Reflectance Spectroscopy (NIRS) for rapid determination of biochemical methane potential of plant biomass," Applied Energy, Elsevier, vol. 116(C), pages 52-57.
    2. O’Shea, Richard & Kilgallon, Ian & Wall, David & Murphy, Jerry D., 2016. "Quantification and location of a renewable gas industry based on digestion of wastes in Ireland," Applied Energy, Elsevier, vol. 175(C), pages 229-239.
    3. Santagata, R. & Ripa, M. & Ulgiati, S., 2017. "An environmental assessment of electricity production from slaughterhouse residues. Linking urban, industrial and waste management systems," Applied Energy, Elsevier, vol. 186(P2), pages 175-188.
    4. Aragón-Briceño, C.I. & Pozarlik, A.K. & Bramer, E.A. & Niedzwiecki, Lukasz & Pawlak-Kruczek, H. & Brem, G., 2021. "Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review," Renewable Energy, Elsevier, vol. 171(C), pages 401-415.
    5. Dandikas, Vasilis & Heuwinkel, Hauke & Lichti, Fabian & Eckl, Thomas & Drewes, Jörg E. & Koch, Konrad, 2018. "Correlation between hydrolysis rate constant and chemical composition of energy crops," Renewable Energy, Elsevier, vol. 118(C), pages 34-42.
    6. Eleni Iacovidou & Jonathan Busch & John N. Hahladakis & Helen Baxter & Kok Siew Ng & Ben M. J. Herbert, 2017. "A Parameter Selection Framework for Sustainability Assessment," Sustainability, MDPI, vol. 9(9), pages 1-18, August.
    7. Allen, Eoin & Wall, David M. & Herrmann, Christiane & Murphy, Jerry D., 2016. "A detailed assessment of resource of biomethane from first, second and third generation substrates," Renewable Energy, Elsevier, vol. 87(P1), pages 656-665.
    8. Luigi Ranieri & Giorgio Mossa & Roberta Pellegrino & Salvatore Digiesi, 2018. "Energy Recovery from the Organic Fraction of Municipal Solid Waste: A Real Options-Based Facility Assessment," Sustainability, MDPI, vol. 10(2), pages 1-15, January.
    9. Romero-Güiza, M.S. & Peces, M. & Astals, S. & Benavent, J. & Valls, J. & Mata-Alvarez, J., 2014. "Implementation of a prototypal optical sorter as core of the new pre-treatment configuration of a mechanical–biological treatment plant treating OFMSW through anaerobic digestion," Applied Energy, Elsevier, vol. 135(C), pages 63-70.
    10. Yong, Zihan & Dong, Yulin & Zhang, Xu & Tan, Tianwei, 2015. "Anaerobic co-digestion of food waste and straw for biogas production," Renewable Energy, Elsevier, vol. 78(C), pages 527-530.
    11. Isabella Pecorini & Elena Rossi & Renato Iannelli, 2020. "Bromatological, Proximate and Ultimate Analysis of OFMSW for Different Seasons and Collection Systems," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    12. Mahmudul, H.M. & Rasul, M.G. & Akbar, D. & Narayanan, R. & Mofijur, M., 2022. "Food waste as a source of sustainable energy: Technical, economical, environmental and regulatory feasibility analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    13. Boldrin, Alessio & Baral, Khagendra Raj & Fitamo, Temesgen & Vazifehkhoran, Ali Heidarzadeh & Jensen, Ida Græsted & Kjærgaard, Ida & Lyng, Kari-Anne & van Nguyen, Quan & Nielsen, Lise Skovsgaard & Tri, 2016. "Optimised biogas production from the co-digestion of sugar beet with pig slurry: Integrating energy, GHG and economic accounting," Energy, Elsevier, vol. 112(C), pages 606-617.
    14. Liu, Yueling & Feng, Kai & Li, Huan, 2019. "Rapid conversion from food waste to electricity by combining anaerobic fermentation and liquid catalytic fuel cell," Applied Energy, Elsevier, vol. 233, pages 395-402.
    15. Zarkadas, Ioannis S. & Sofikiti, Artemis S. & Voudrias, Evangelos A. & Pilidis, Georgios A., 2015. "Thermophilic anaerobic digestion of pasteurised food wastes and dairy cattle manure in batch and large volume laboratory digesters: Focussing on mixing ratios," Renewable Energy, Elsevier, vol. 80(C), pages 432-440.
    16. Badgett, Alex & Newes, Emily & Milbrandt, Anelia, 2019. "Economic analysis of wet waste-to-energy resources in the United States," Energy, Elsevier, vol. 176(C), pages 224-234.
    17. Li, Dong & Huang, Xianbo & Wang, Qingjing & Yuan, Yuexiang & Yan, Zhiying & Li, Zhidong & Huang, Yajun & Liu, Xiaofeng, 2016. "Kinetics of methane production and hydrolysis in anaerobic digestion of corn stover," Energy, Elsevier, vol. 102(C), pages 1-9.
    18. Li, Yangyang & Jin, Yiying & Li, Jinhui & Nie, Yongfeng, 2016. "Enhanced nitrogen distribution and biomethanation of kitchen waste by thermal pre-treatment," Renewable Energy, Elsevier, vol. 89(C), pages 380-388.
    19. Tiago Miguel Cabrita & Maria Teresa Santos, 2023. "Biochemical Methane Potential Assays for Organic Wastes as an Anaerobic Digestion Feedstock," Sustainability, MDPI, vol. 15(15), pages 1-30, July.
    20. Zhao, Ning & You, Fengqi, 2021. "Food-energy-water-waste nexus systems optimization for New York State under the COVID-19 pandemic to alleviate health and environmental concerns," Applied Energy, Elsevier, vol. 282(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5665-:d:1427846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.