IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i13p5610-d1426298.html
   My bibliography  Save this article

Research on Environmental Kuznets Curve of Construction Waste Generation Based on China’s Provincial Data

Author

Listed:
  • Buhan Wang

    (School of Architectural Science and Engineering, Yangzhou University, Yangzhou 225127, China)

  • Renfu Jia

    (School of Architectural Science and Engineering, Yangzhou University, Yangzhou 225127, China)

  • Jiahui Xu

    (School of Architectural Science and Engineering, Yangzhou University, Yangzhou 225127, China)

  • Yi Wei

    (School of Architectural Science and Engineering, Yangzhou University, Yangzhou 225127, China)

  • Qiangsheng Li

    (School of Architectural Science and Engineering, Yangzhou University, Yangzhou 225127, China)

  • Yi Yao

    (School of Architectural Science and Engineering, Yangzhou University, Yangzhou 225127, China)

  • Xiaoxia Zhu

    (School of Architectural Science and Engineering, Yangzhou University, Yangzhou 225127, China)

  • Anqi Xu

    (School of Architectural Science and Engineering, Yangzhou University, Yangzhou 225127, China)

  • Jiaxin Zhang

    (School of Economics and Management, Inner Mongolia University of Science & Technology, Baotou 014010, China)

Abstract

The mounting volume of construction waste in China has been steadily rising over the years, yet has largely been overlooked. The environmental Kuznets curve offers a theoretical framework for understanding environmental management by illustrating the relationship between economic development and environmental degradation. This paper applies the environmental Kuznets curve concept to China’s construction waste generation, utilizing per capita construction waste and gross domestic product per capita as environmental and economic indicators, respectively. Panel data from 31 Chinese provinces, municipalities, and autonomous regions spanning from 2000 to 2022 are analyzed. This study reveals an N-shaped relationship between per capita construction waste generation and gross domestic product per capita in China. Additionally, this paper employs the stochastic impacts by regression on population, affluence, and technology model to assess the factors influencing construction waste generation. In descending order of impact, these factors are the size of China’s secondary industry value added (19.34%), construction labor productivity (19.33%), gross domestic product per capita (18.54%), urbanization rate (17.77%), year-end resident population (17.22%), and the technical equipment rate of construction enterprises (8.83%). All these factors contribute positively to construction waste generation. These findings are pivotal in guiding efforts towards minimizing construction waste at its source and for the sustainable development of the construction industry.

Suggested Citation

  • Buhan Wang & Renfu Jia & Jiahui Xu & Yi Wei & Qiangsheng Li & Yi Yao & Xiaoxia Zhu & Anqi Xu & Jiaxin Zhang, 2024. "Research on Environmental Kuznets Curve of Construction Waste Generation Based on China’s Provincial Data," Sustainability, MDPI, vol. 16(13), pages 1-14, June.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5610-:d:1426298
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/13/5610/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/13/5610/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    2. Lu, Weisheng & Tam, Vivian W.Y., 2013. "Construction waste management policies and their effectiveness in Hong Kong: A longitudinal review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 214-223.
    3. Friedl, Birgit & Getzner, Michael, 2003. "Determinants of CO2 emissions in a small open economy," Ecological Economics, Elsevier, vol. 45(1), pages 133-148, April.
    4. Danesh Miah, Md. & Farhad Hossain Masum, Md. & Koike, Masao, 2010. "Global observation of EKC hypothesis for CO2, SOx and NOx emission: A policy understanding for climate change mitigation in Bangladesh," Energy Policy, Elsevier, vol. 38(8), pages 4643-4651, August.
    5. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omri, Anis, 2018. "Entrepreneurship, sectoral outputs and environmental improvement: International evidence," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 46-55.
    2. Abdelaziz Boukhelkhal, 2022. "Energy use, economic growth and CO2 emissions in Africa: does the environmental Kuznets curve hypothesis exist? New evidence from heterogeneous panel under cross-sectional dependence," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 13083-13110, November.
    3. Miomir Jovanović & Ljiljana Kašćelan & Aleksandra Despotović & Vladimir Kašćelan, 2015. "The Impact of Agro-Economic Factors on GHG Emissions: Evidence from European Developing and Advanced Economies," Sustainability, MDPI, vol. 7(12), pages 1-21, December.
    4. Pao, Hsiao-Tien & Tsai, Chung-Ming, 2010. "CO2 emissions, energy consumption and economic growth in BRIC countries," Energy Policy, Elsevier, vol. 38(12), pages 7850-7860, December.
    5. H ctor F. Salazar-N ez & Francisco Venegas-Mart nez & Miguel Tinoco-Zerme o, 2020. "Impact of Energy Consumption and Carbon Dioxide Emissions on Economic Growth: Cointegrated Panel Data in 79 Countries Grouped by Income Level," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 218-226.
    6. Al Mamun, Md. & Sohag, Kazi & Hannan Mia, Md. Abdul & Salah Uddin, Gazi & Ozturk, Ilhan, 2014. "Regional differences in the dynamic linkage between CO2 emissions, sectoral output and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1-11.
    7. Zheng, Xinye & Yu, Yihua & Wang, Jing & Deng, Huihui, 2013. "Identifying the determinants and spatial nexus of provincial carbon intensity in China: A dynamic spatial panel approach," MPRA Paper 56088, University Library of Munich, Germany.
    8. Muller-Furstenberger, Georg & Wagner, Martin, 2007. "Exploring the environmental Kuznets hypothesis: Theoretical and econometric problems," Ecological Economics, Elsevier, vol. 62(3-4), pages 648-660, May.
    9. F. Akpan, Usenobong & E. Abang, Dominic, 2014. "Environmental Quality and Economic Growth: A Panel Analysis of the "U" in Kuznets," MPRA Paper 54461, University Library of Munich, Germany.
    10. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    11. Omri, Anis & Daly, Saida & Rault, Christophe & Chaibi, Anissa, 2015. "Financial development, environmental quality, trade and economic growth: What causes what in MENA countries," Energy Economics, Elsevier, vol. 48(C), pages 242-252.
    12. Aslanidis, Nektarios, 2009. "Environmental Kuznets Curves for Carbon Emissions: A Critical Survey," Working Papers 2072/15847, Universitat Rovira i Virgili, Department of Economics.
    13. Sharif Hossain, Md., 2011. "Panel estimation for CO2 emissions, energy consumption, economic growth, trade openness and urbanization of newly industrialized countries," Energy Policy, Elsevier, vol. 39(11), pages 6991-6999.
    14. Sinha, Avik & Shahbaz, Muhammad & Balsalobre, Daniel, 2017. "Exploring the Relationship between Energy Usage Segregation and Environmental Degradation in N-11 Countries," MPRA Paper 81212, University Library of Munich, Germany, revised 07 Sep 2017.
    15. Mohamed Abdouli & Sami Hammami, 2020. "Economic Growth, Environment, FDI Inflows, and Financial Development in Middle East Countries: Fresh Evidence from Simultaneous Equation Models," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 11(2), pages 479-511, June.
    16. Donatella Baiardi, 2012. "Innovation and the environmental Kuznets curve: the case of CO, NMVOCs and SOx in the Italian regions," Quaderni di Dipartimento 156, University of Pavia, Department of Economics and Quantitative Methods.
    17. Louis Sevitnenyi Nkwatoh, 2022. "Zero-pollution effect and economic development: standard and nested environmental Kuznets curve analyses for West Africa," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 11895-11910, October.
    18. Bakry, Walid & Mallik, Girijasankar & Nghiem, Xuan-Hoa & Sinha, Avik & Vo, Xuan Vinh, 2023. "Is green finance really “green”? Examining the long-run relationship between green finance, renewable energy and environmental performance in developing countries," Renewable Energy, Elsevier, vol. 208(C), pages 341-355.
    19. Bingjie Xu & Ruoyu Zhong & Yifeng Liu, 2019. "Comparison of CO 2 emissions reduction efficiency of household fuel consumption in China," Sustainability, MDPI, vol. 11(4), pages 1-13, February.
    20. Arvin, Mak B. & Pradhan, Rudra P. & Norman, Neville R., 2015. "Transportation intensity, urbanization, economic growth, and CO2 emissions in the G-20 countries," Utilities Policy, Elsevier, vol. 35(C), pages 50-66.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5610-:d:1426298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.