IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i13p5561-d1425197.html
   My bibliography  Save this article

Order or Collaborate? Manufacturers Utilize 3D-Printed Parts to Sustainably Facilitate Increased Product Variety

Author

Listed:
  • Qian Zhao

    (School of Management and Economics, University of Electronic Science and Technology of China, Chengdu 611731, China)

  • Zhengkai Wang

    (School of Management and Economics, University of Electronic Science and Technology of China, Chengdu 611731, China)

  • Kaiming Zheng

    (School of Logistics and Management Engineering, Yunnan University of Finance and Economics, Kunming 650221, China)

Abstract

3D printing (3DP) has garnered significant attention from industries, prompting traditional manufacturers to adopt 3DP to sustainably facilitate increased product variety. Observing manufacturers’ two adoption strategies, ordering parts and collaboratively printing 3DP parts, in a real-world setting, we utilize a wholesale price contract and a Nash Bargaining contract to describe these two strategies and then develop a supply-chain model including a 3DP supplier (Supplier) and a traditional manufacturer (Manufacturer). Further, we employ backward induction to solve the subgame-perfect Nash equilibrium for the model to reveal differences between these two strategies and the impact of 3DP’s improved resource efficiency. According to equilibrium outcomes, analytical results show that first, as long as the unit cost of each 3DP part is not overly high and 3DP’s resource efficiency is not extremely low, the Manufacturer is willing to implement 3DP to increase product variety. Second, a rise in the resource efficiency can create a “win-win” scenario for the Manufacturer and the Supplier. Third, supply-chain collaboration can be achieved when the Manufacturer’s and the Supplier’s bargaining powers approach equality. Interestingly, a Nash bargaining contract can incentivize the manufacturer to substitute a base product with a variety of products, a change facilitated by an increase in the retail price of this base product. The managerial implication of this research is that enhanced resource efficiency can lead to less environmental pollution in the collaboration model by resulting in the sale of lower quantities of the base product, which would otherwise consume more resources and generate greater environmental pollution.

Suggested Citation

  • Qian Zhao & Zhengkai Wang & Kaiming Zheng, 2024. "Order or Collaborate? Manufacturers Utilize 3D-Printed Parts to Sustainably Facilitate Increased Product Variety," Sustainability, MDPI, vol. 16(13), pages 1-23, June.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5561-:d:1425197
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/13/5561/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/13/5561/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jean Tirole, 1988. "The Theory of Industrial Organization," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262200716, April.
    2. Hartl, Richard F. & Kort, Peter M., 2017. "Possible market entry of a firm with an additive manufacturing technology," International Journal of Production Economics, Elsevier, vol. 194(C), pages 190-199.
    3. Arbabian, Mohammad E., 2022. "Supply Chain Coordination via Additive Manufacturing," International Journal of Production Economics, Elsevier, vol. 243(C).
    4. Arbabian, Mohammad E. & Wagner, Michael R., 2020. "The impact of 3D printing on manufacturer–retailer supply chains," European Journal of Operational Research, Elsevier, vol. 285(2), pages 538-552.
    5. Ayd{i}n Alptekinou{g}lu & Charles J. Corbett, 2008. "Mass Customization vs. Mass Production: Variety and Price Competition," Manufacturing & Service Operations Management, INFORMS, vol. 10(2), pages 204-217, August.
    6. Kleer, Robin & Piller, Frank T., 2019. "Local manufacturing and structural shifts in competition: Market dynamics of additive manufacturing," International Journal of Production Economics, Elsevier, vol. 216(C), pages 23-34.
    7. Li, Wei & Sun, Hui & Tong, Meng & Mustafee, Navonil & Koh, Lenny, 2024. "Customizing customization in a 3D printing-enabled hybrid manufacturing supply chain," International Journal of Production Economics, Elsevier, vol. 268(C).
    8. Sun, Mingyao & Ng, Chi To & Yang, Liu & Zhang, Tianhua, 2024. "Optimal after-sales service offering strategy: Additive manufacturing, traditional manufacturing, or hybrid?," International Journal of Production Economics, Elsevier, vol. 268(C).
    9. Tsan‐Ming Choi & Subodha Kumar & Xiaohang Yue & Hau‐Ling Chan, 2022. "Disruptive Technologies and Operations Management in the Industry 4.0 Era and Beyond," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 9-31, January.
    10. Guan, Zhimin & Ye, Tong & Yin, Rui, 2020. "Channel coordination under Nash bargaining fairness concerns in differential games of goodwill accumulation," European Journal of Operational Research, Elsevier, vol. 285(3), pages 916-930.
    11. Jia, Fu & Wang, Xiaofeng & Mustafee, Navonil & Hao, Liang, 2016. "Investigating the feasibility of supply chain-centric business models in 3D chocolate printing: A simulation study," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 202-213.
    12. Guo, Shu & Choi, Tsan-Ming & Chung, Sai-Ho, 2022. "Self-design fun: Should 3D printing be employed in mass customization operations?," European Journal of Operational Research, Elsevier, vol. 299(3), pages 883-897.
    13. Sun, Luoyi & Hua, Guowei & Cheng, T.C.E. & Wang, Yixiao, 2020. "How to price 3D-printed products? Pricing strategy for 3D printing platforms," International Journal of Production Economics, Elsevier, vol. 226(C).
    14. Qi Feng & Lauren Xiaoyuan Lu, 2012. "The Strategic Perils of Low Cost Outsourcing," Management Science, INFORMS, vol. 58(6), pages 1196-1210, June.
    15. Nagarajan Sethuraman & Ali K. Parlaktürk & Jayashankar M. Swaminathan, 2023. "Personal fabrication as an operational strategy: Value of delegating production to customer using 3D printing," Production and Operations Management, Production and Operations Management Society, vol. 32(7), pages 2362-2375, July.
    16. Chu, Wai Hung Julius & Lee, Ching Chyi, 2006. "Strategic information sharing in a supply chain," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1567-1579, November.
    17. Yunguang Long & Jieyi Pan & Qinghui Zhang & Yingjie Hao, 2017. "3D printing technology and its impact on Chinese manufacturing," International Journal of Production Research, Taylor & Francis Journals, vol. 55(5), pages 1488-1497, March.
    18. Weller, Christian & Kleer, Robin & Piller, Frank T., 2015. "Economic implications of 3D printing: Market structure models in light of additive manufacturing revisited," International Journal of Production Economics, Elsevier, vol. 164(C), pages 43-56.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marić, Josip & Opazo-Basáez, Marco & Vlačić, Božidar & Dabić, Marina, 2023. "Innovation management of three-dimensional printing (3DP) technology: Disclosing insights from existing literature and determining future research streams," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    2. Li, Wei & Sun, Hui & Tong, Meng & Mustafee, Navonil & Koh, Lenny, 2024. "Customizing customization in a 3D printing-enabled hybrid manufacturing supply chain," International Journal of Production Economics, Elsevier, vol. 268(C).
    3. Guo, Shu & Choi, Tsan-Ming & Chung, Sai-Ho, 2022. "Self-design fun: Should 3D printing be employed in mass customization operations?," European Journal of Operational Research, Elsevier, vol. 299(3), pages 883-897.
    4. Rachel Lacroix & Anna Timonina-Farkas & Ralf W. Seifert, 2023. "Utilizing additive manufacturing and mass customization under capacity constraints," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 281-301, January.
    5. Chaudhuri, Atanu & Datta, Partha Priya & Fernandes, Kiran J. & Xiong, Yu, 2021. "Optimal pricing strategies for manufacturing-as-a service platforms to ensure business sustainability," International Journal of Production Economics, Elsevier, vol. 234(C).
    6. Sun, Mingyao & Ng, Chi To & Yang, Liu & Zhang, Tianhua, 2024. "Optimal after-sales service offering strategy: Additive manufacturing, traditional manufacturing, or hybrid?," International Journal of Production Economics, Elsevier, vol. 268(C).
    7. Naghshineh, Bardia & Carvalho, Helena, 2022. "The implications of additive manufacturing technology adoption for supply chain resilience: A systematic search and review," International Journal of Production Economics, Elsevier, vol. 247(C).
    8. Kleer, Robin & Piller, Frank T., 2019. "Local manufacturing and structural shifts in competition: Market dynamics of additive manufacturing," International Journal of Production Economics, Elsevier, vol. 216(C), pages 23-34.
    9. Harshad Sonar & Vivek Khanzode & Milind Akarte, 2022. "Additive Manufacturing Enabled Supply Chain Management: A Review and Research Directions," Vision, , vol. 26(2), pages 147-162, June.
    10. Haoyu Sun & Huiqi Zheng & Xiaoyang Sun & Wei Li, 2022. "Customized Investment Decisions for New and Remanufactured Products Supply Chain Based on 3D Printing Technology," Sustainability, MDPI, vol. 14(5), pages 1-21, February.
    11. Li Chen & Yao Cui & Hau L. Lee, 2021. "Retailing with 3D Printing," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 1986-2007, July.
    12. Beltagui, Ahmad & Gold, Stefan & Kunz, Nathan & Reiner, Gerald, 2023. "Special Issue: Rethinking operations and supply chain management in light of the 3D printing revolution," International Journal of Production Economics, Elsevier, vol. 255(C).
    13. Shivam Gupta & Sachin Modgil & Piera Centobelli & Roberto Cerchione & Serena Strazzullo, 2022. "Additive Manufacturing and Green Information Systems as Technological Capabilities for Firm Performance," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 23(4), pages 515-534, December.
    14. Lacroix, Rachel & Seifert, Ralf W. & Timonina-Farkas, Anna, 2021. "Benefiting from additive manufacturing for mass customization across the product life cycle," Operations Research Perspectives, Elsevier, vol. 8(C).
    15. Arcan Nalca, & Tamer Boyaci, & Saibal Ray, 2017. "Consumer taste uncertainty in the context of store brand and national brand competition," ESMT Research Working Papers ESMT-17-01, ESMT European School of Management and Technology.
    16. Naghshineh, Bardia & Ribeiro, André & Jacinto, Celeste & Carvalho, Helena, 2021. "Social impacts of additive manufacturing: A stakeholder-driven framework," Technological Forecasting and Social Change, Elsevier, vol. 164(C).
    17. Matsui, Kenji, 2021. "Buyer’s strategic demand information sharing with an upstream echelon for entry promotion," International Journal of Production Economics, Elsevier, vol. 242(C).
    18. Tsan-Ming Choi & Alexandre Dolgui & Dmitry Ivanov & Erwin Pesch, 2022. "OR and analytics for digital, resilient, and sustainable manufacturing 4.0," Annals of Operations Research, Springer, vol. 310(1), pages 1-6, March.
    19. Hayakawa, Kazunobu & Mukunoki, Hiroshi, 2022. "How does additive manufacturing change trade?: evidence from trade in sound recordings," IDE Discussion Papers 848, Institute of Developing Economies, Japan External Trade Organization(JETRO).
    20. Kanglin Chen & Xin Wang & Baozhuang Niu & Ying‐Ju Chen, 2022. "The impact of tariffs and price premiums of locally manufactured products on global manufacturers' sourcing strategies," Production and Operations Management, Production and Operations Management Society, vol. 31(9), pages 3474-3490, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5561-:d:1425197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.