IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i13p5520-d1424596.html
   My bibliography  Save this article

Can Low-Carbon City Pilot Policy Promote Regional Green High-Quality Development?

Author

Listed:
  • Chao Zeng

    (School of Business, Jiangxi Normal University Science and Technology College, Gongqingcheng 332020, China)

  • Shanying Jiang

    (School of Business, Jiangxi Normal University, Nanchang 330022, China)

  • Fengxiu Zhou

    (School of Business, Jiangxi Normal University, Nanchang 330022, China)

Abstract

Studying the implementation benefits of low-carbon city pilot policies in fostering green, high-quality development is critical for China’s carbon peaking and neutrality targets. This research examines the effect of urban low-carbon governance on green, high-quality development using a multi-temporal DID model and panel data from 281 prefecture-level cities in China from 2007 to 2020. The findings are as follows: (1) low-carbon city pilot policy can considerably enhance green high-quality development in pilot cities; (2) mechanism tests reveal that fintech and urban innovation moderate the role of power support and wisdom empowerment in the successful promotion of low-carbon cities to achieve green high-quality development in pilot areas; (3) the policy effect becomes more significant as fintech and urban innovation cross the threshold value; (4) heterogeneity analysis shows that low-carbon city pilot policy is more conducive to green high-quality development in eastern regions, financially developed cities, and non-resource-based cities. The conclusions drawn from this paper offer valuable guidance for China’s adoption of appropriate environmental policy designs aimed at attaining high-quality green development.

Suggested Citation

  • Chao Zeng & Shanying Jiang & Fengxiu Zhou, 2024. "Can Low-Carbon City Pilot Policy Promote Regional Green High-Quality Development?," Sustainability, MDPI, vol. 16(13), pages 1-23, June.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5520-:d:1424596
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/13/5520/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/13/5520/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jochen Markard, 2018. "The next phase of the energy transition and its implications for research and policy," Nature Energy, Nature, vol. 3(8), pages 628-633, August.
    2. Lee, Changhun & Lim, Chiehyeon, 2021. "From technological development to social advance: A review of Industry 4.0 through machine learning," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    3. Zhang, Sheng-Hao & Yang, Jun & Feng, Chao, 2023. "Can internet development alleviate energy poverty? Evidence from China," Energy Policy, Elsevier, vol. 173(C).
    4. Deng, Youyi & Dong, Kangyin, 2024. "How does the coal-to-gas policy mitigate carbon emissions? The role of fintech development," Resources Policy, Elsevier, vol. 89(C).
    5. Lu, Fengzhi & Li, Zhongwu & Zhang, Shuai, 2023. "Does digital finance development affect carbon emission intensity: Evidence from China," International Review of Economics & Finance, Elsevier, vol. 88(C), pages 1272-1286.
    6. Wen, Jun & Okolo, Chukwuemeka Valentine & Ugwuoke, Ifeanyi Celestine & Kolani, Kibir, 2022. "Research on influencing factors of renewable energy, energy efficiency, on technological innovation. Does trade, investment and human capital development matter?," Energy Policy, Elsevier, vol. 160(C).
    7. Yi Wang & Jianhe Wang & Lei Wang & Li Zhang & Ziman Xiang, 2023. "Economic Development And Rural Energy Poverty: Evidence From China," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 68(04), pages 1231-1250, June.
    8. Shao, Hanhua & Wang, Yaning & Wen, Huwei, 2024. "Investigating the carbon curse of natural resource dependence: A carbon trading scheme," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 769-783.
    9. Wang, Chang’an & Liu, Xiaoqian & Li, Han & Yang, Cunyi, 2023. "Analyzing the impact of low-carbon city pilot policy on enterprises' labor demand: Evidence from China," Energy Economics, Elsevier, vol. 124(C).
    10. Runyuan Wang & Weiguang Cai & Hong Ren & Xianrui Ma, 2023. "Heterogeneous Effects of the Talent Competition on Urban Innovation in China: Evidence from Prefecture-Level Cities," Land, MDPI, vol. 12(3), pages 1-15, March.
    11. Ma, Dan & Zhu, Qing, 2022. "Innovation in emerging economies: Research on the digital economy driving high-quality green development," Journal of Business Research, Elsevier, vol. 145(C), pages 801-813.
    12. Zhu, Minglei & Huang, Haiyan & Ma, Weiwen, 2023. "Transformation of natural resource use: Moving towards sustainability through ICT-based improvements in green total factor energy efficiency," Resources Policy, Elsevier, vol. 80(C).
    13. Wang, Hai-jie & Tang, Kai, 2023. "Extreme climate, innovative ability and energy efficiency," Energy Economics, Elsevier, vol. 120(C).
    14. Tan, Qingmei & Yasmeen, Humaira & Ali, Sharafat & Ismail, Hina & Zameer, Hashim, 2023. "Fintech development, renewable energy consumption, government effectiveness and management of natural resources along the belt and road countries," Resources Policy, Elsevier, vol. 80(C).
    15. Song, Qijiao & Qin, Ming & Wang, Ruichen & Qi, Ye, 2020. "How does the nested structure affect policy innovation?: Empirical research on China's low carbon pilot cities," Energy Policy, Elsevier, vol. 144(C).
    16. Du, Kerui & Li, Pengzhen & Yan, Zheming, 2019. "Do green technology innovations contribute to carbon dioxide emission reduction? Empirical evidence from patent data," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 297-303.
    17. Suki, Norazah Mohd & Suki, Norbayah Mohd & Afshan, Sahar & Sharif, Arshian & Meo, Muhammad Saeed, 2022. "The paradigms of technological innovation and renewables as a panacea for sustainable development: A pathway of going green," Renewable Energy, Elsevier, vol. 181(C), pages 1431-1439.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingyue Xie & Suning Zhao & Kun Lv, 2024. "The Impact of Green Finance and Financial Technology on Regional Green Energy Technological Innovation Based on the Dual Machine Learning and Spatial Econometric Models," Energies, MDPI, vol. 17(11), pages 1-27, May.
    2. Song, Yang & He, Yinghong & Sahut, Jean-Michel & Shah, Syed Hasanat, 2024. "Can low-carbon city pilot policy decrease urban energy poverty?," Energy Policy, Elsevier, vol. 186(C).
    3. Yan, Zheming & Sun, Zao & Shi, Rui & Zhao, Minjuan, 2023. "Smart city and green development: Empirical evidence from the perspective of green technological innovation," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    4. Ding, Qian & Huang, Jianbai & Chen, Jinyu & Tao, Dali, 2023. "Internet development and renewable energy technological innovation: Does institutional quality matter?," Renewable Energy, Elsevier, vol. 218(C).
    5. Lin, Boqiang & Ullah, Sami, 2023. "Towards the goal of going green: Do green growth and innovation matter for environmental sustainability in Pakistan," Energy, Elsevier, vol. 285(C).
    6. Han, Hongyun & Zhou, Zinan, 2024. "The rebound effect of energy consumption and its determinants in China's agricultural production," Energy, Elsevier, vol. 290(C).
    7. Wei, Jia & Wen, Jun & Wang, Xiao-Yang & Ma, Jie & Chang, Chun-Ping, 2023. "Green innovation, natural extreme events, and energy transition: Evidence from Asia-Pacific economies," Energy Economics, Elsevier, vol. 121(C).
    8. Zeng, Shihong & Li, Tengfei & Wu, Shaomin & Gao, Weijun & Li, Gen, 2024. "Does green technology progress have a significant impact on carbon dioxide emissions?," Energy Economics, Elsevier, vol. 133(C).
    9. Wang, Shubin & Li, Jiabao & Zhao, Erlong, 2024. "Exploring the role of financial technologies and digital trade in shaping trade-adjusted resource consumption in E7 countries," Resources Policy, Elsevier, vol. 88(C).
    10. Lv, Zhaojiang & Chen, Lan & Ali, Syed Ahtsham & Muda, Iskandar & Alromaihi, Abdullah & Boltayev, Jurabek Yusufovich, 2024. "Financial technologies, green technologies and natural resource nexus with sustainable development goals: Evidence from resource abundant economies using MMQR estimation," Resources Policy, Elsevier, vol. 89(C).
    11. Mingyue Chen & Shuting Wang & Xiaowen Wang, 2024. "How Does Artificial Intelligence Impact Green Development? Evidence from China," Sustainability, MDPI, vol. 16(3), pages 1-23, February.
    12. Yi, Jiahui & Dai, Sheng & Li, Lin & Cheng, Jinhua, 2024. "How does digital economy development affect renewable energy innovation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    13. Yadav, Sanjeev & Samadhiya, Ashutosh & Kumar, Anil & Luthra, Sunil & Pandey, Krishan Kumar, 2024. "Nexus between fintech, green finance and natural resources management: Transition of BRICS nation industries from resource curse to resource blessed sustainable economies," Resources Policy, Elsevier, vol. 91(C).
    14. Zou, Ran & Yang, Jun & Feng, Chao, 2023. "Does informatization alleviate energy poverty? A global perspective," Energy Economics, Elsevier, vol. 126(C).
    15. Tang, Kai & Wang, Yu-ying & Wang, Hai-jie, 2024. "The impact of innovation capability on green development in China's urban agglomerations," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    16. Li, Jiaman & Dong, Kangyin & Dong, Xiucheng, 2022. "Green energy as a new determinant of green growth in China: The role of green technological innovation," Energy Economics, Elsevier, vol. 114(C).
    17. Wang, Hai-jie & Tang, Kai, 2023. "Extreme climate, innovative ability and energy efficiency," Energy Economics, Elsevier, vol. 120(C).
    18. Emmanuel Ebo Arthur & Solomon Gyamfi & Wolfgang Gerstlberger & Jan Stejskal & Viktor Prokop, 2023. "Towards Circular Economy: Unveiling Heterogeneous Effects of Government Policy Stringency, Environmentally Related Innovation, and Human Capital within OECD Countries," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    19. Lingzhang Kong & Jinye Li, 2022. "Digital Economy Development and Green Economic Efficiency: Evidence from Province-Level Empirical Data in China," Sustainability, MDPI, vol. 15(1), pages 1-26, December.
    20. Ostadzad, Ali Hossein, 2022. "Innovation and carbon emissions: Fixed-effects panel threshold model estimation for renewable energy," Renewable Energy, Elsevier, vol. 198(C), pages 602-617.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5520-:d:1424596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.