IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i13p5307-d1419927.html
   My bibliography  Save this article

The Impact of Technology Convergence on the Sustainable Innovation of China’s Modern Manufacturing Enterprises: The Mediating Role of the Knowledge Base

Author

Listed:
  • Chenguang Li

    (School of Economics and Management, North China University of Technology, Beijing 100144, China)

  • Jingtong Gong

    (School of Economics and Management, North China University of Technology, Beijing 100144, China)

  • Jie Luo

    (School of Economics and Management, North China University of Technology, Beijing 100144, China)

  • Zhenjun Qiu

    (School of Economics and Management, Beijing University of Technology, Beijing 100124, China)

Abstract

Against the backdrop of swiftly changing industrial environments, this study aims to investigate the influence of technology convergence on the sustainable innovation of manufacturing enterprises. The purpose of this research is to determine the future competitiveness and expansion potential of industries by evaluating the impact of technological convergence on innovation performance, which serves as a significant metric for assessing the sustainability of corporate innovation practices. Specifically, the relationships among three characteristics of technological convergence and enterprise innovation performance—betweenness, closeness, and clustering—are analyzed. Using the financial, property, and patent data of listed companies in China’s automotive manufacturing industry, an empirical study is conducted using a negative binomial regression model. Enhancing all three technology convergence characteristics is found to be conducive to enhancing sustainable innovation. Meanwhile, the corporate knowledge base plays a mediating role in which the effect of knowledge base width on clustering technology integration is more strongly mediated by the effect of knowledge base depth on approaching technology integration. The results of this study are useful for policymakers, corporate strategists, and innovation managers who are looking to enhance sustainable innovation practices within their organizations. By understanding the critical roles of betweenness, closeness, and clustering in technological convergence, stakeholders can better position their firms to leverage these attributes for improved innovation performance and competitive advantage.

Suggested Citation

  • Chenguang Li & Jingtong Gong & Jie Luo & Zhenjun Qiu, 2024. "The Impact of Technology Convergence on the Sustainable Innovation of China’s Modern Manufacturing Enterprises: The Mediating Role of the Knowledge Base," Sustainability, MDPI, vol. 16(13), pages 1-21, June.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5307-:d:1419927
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/13/5307/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/13/5307/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dejing Kong & Jianzhong Yang & Lingfeng Li, 2020. "Early identification of technological convergence in numerical control machine tool: a deep learning approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1983-2009, December.
    2. Lee, Hyunmin, 2023. "Converging technology to improve firm innovation competencies and business performance: Evidence from smart manufacturing technologies," Technovation, Elsevier, vol. 123(C).
    3. Daniel Hain & Roman Jurowetzki & Sungjoo Lee & Yuan Zhou, 2023. "Machine learning and artificial intelligence for science, technology, innovation mapping and forecasting: Review, synthesis, and applications," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1465-1472, March.
    4. Han, Eun Jin & Sohn, So Young, 2016. "Technological convergence in standards for information and communication technologies," Technological Forecasting and Social Change, Elsevier, vol. 106(C), pages 1-10.
    5. van Meeteren, Michiel & Trincado-Munoz, Francisco & Rubin, Tzameret H. & Vorley, Tim, 2022. "Rethinking the digital transformation in knowledge-intensive services: A technology space analysis," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    6. Euiseok Kim & Yongrae Cho & Wonjoon Kim, 2014. "Dynamic patterns of technological convergence in printed electronics technologies: patent citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 975-998, February.
    7. Xiangdong Zhan & Fuji Xie, 2023. "Knowledge Activities of External Knowledge Network and Technological Capability: Evidence from China," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 14(2), pages 1343-1370, June.
    8. Kose, Toshihiro & Sakata, Ichiro, 2019. "Identifying technology convergence in the field of robotics research," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 751-766.
    9. Caviggioli, Federico, 2016. "Technology fusion: Identification and analysis of the drivers of technology convergence using patent data," Technovation, Elsevier, vol. 55, pages 22-32.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seo, Wonchul & Afifuddin, Mokh, 2024. "Developing a supervised learning model for anticipating potential technology convergence between technology topics," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    2. Ying Tang & Xuming Lou & Zifeng Chen & Chengjin Zhang, 2020. "A Study on Dynamic Patterns of Technology Convergence with IPC Co-Occurrence-Based Analysis: The Case of 3D Printing," Sustainability, MDPI, vol. 12(7), pages 1-26, March.
    3. Jakob Hoffmann & Johannes Glückler, 2023. "Technological Cohesion and Convergence: A Main Path Analysis of the Bioeconomy, 1900–2020," Sustainability, MDPI, vol. 15(16), pages 1-17, August.
    4. Zhu, Chen & Motohashi, Kazuyuki, 2022. "Identifying the technology convergence using patent text information: A graph convolutional networks (GCN)-based approach," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    5. Qian Xu & Yabin Yu & Xiao Yu, 2022. "Analysis of the Technological Convergence in Smart Textiles," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
    6. ZHU Chen & MOTOHASHI Kazuyuki, 2022. "Government R&D spending as a driving force of technology convergence," Discussion papers 22030, Research Institute of Economy, Trade and Industry (RIETI).
    7. Park, Mingyu & Geum, Youngjung, 2022. "Two-stage technology opportunity discovery for firm-level decision making: GCN-based link-prediction approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    8. Zhao, Shengchao & Zeng, Deming & Li, Jian & Feng, Ke & Wang, Yao, 2023. "Quantity or quality: The roles of technology and science convergence on firm innovation performance," Technovation, Elsevier, vol. 126(C).
    9. Qian Xu & Hua Cheng, 2021. "Research on the Evolution of Textile Technological Convergence in China," Sustainability, MDPI, vol. 13(5), pages 1-13, February.
    10. Sick, Nathalie & Bröring, Stefanie, 2022. "Exploring the research landscape of convergence from a TIM perspective: A review and research agenda," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    11. Soyea Lee & Junseok Hwang & Eunsang Cho, 2022. "Comparing technology convergence of artificial intelligence on the industrial sectors: two-way approaches on network analysis and clustering analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(1), pages 407-452, January.
    12. Jungpyo Lee & So Young Sohn, 2021. "Recommendation system for technology convergence opportunities based on self-supervised representation learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 1-25, January.
    13. Jong Wook Lee & So Young Sohn, 2021. "Patent data based search framework for IT R&D employees for convergence technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5687-5705, July.
    14. Dejing Kong & Jianzhong Yang & Lingfeng Li, 2020. "Early identification of technological convergence in numerical control machine tool: a deep learning approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1983-2009, December.
    15. Aaldering, Lukas Jan & Leker, Jens & Song, Chie Hoon, 2019. "Uncovering the dynamics of market convergence through M&A," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 95-114.
    16. Sajad Ashouri & Anne-Laure Mention & Kosmas X. Smyrnios, 2021. "Anticipation and analysis of industry convergence using patent-level indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5727-5758, July.
    17. Kim, Tae San & Sohn, So Young, 2020. "Machine-learning-based deep semantic analysis approach for forecasting new technology convergence," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    18. Juite Wang & Tzu-Yen Hsu, 2023. "Early discovery of emerging multi-technology convergence for analyzing technology opportunities from patent data: the case of smart health," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4167-4196, August.
    19. Chen Zhu & Kazuyuki Motohashi, 2023. "Government R&D spending as a driving force of technology convergence: a case study of the Advanced Sequencing Technology Program," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(5), pages 3035-3065, May.
    20. Changyong Lee & Suckwon Hong & Juram Kim, 2021. "Anticipating multi-technology convergence: a machine learning approach using patent information," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 1867-1896, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5307-:d:1419927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.