IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i11p4397-d1399822.html
   My bibliography  Save this article

Spatial Heterogeneity Analysis of Factors on Commuting Carbon Emissions: Evidence from the Shenzhen Metropolitan Area in China

Author

Listed:
  • Xin Li

    (China Academy of Urban Planning & Design Shenzhen, Shenzhen 518040, China)

  • Jiayue Zhang

    (The Bartlett School of Planning, University College London, London WC1H 0NN, UK)

  • Wenna Zhang

    (China Academy of Urban Planning & Design Shenzhen, Shenzhen 518040, China)

  • Yue Tan

    (School of Business, Southern University of Science and Technology, Shenzhen 518055, China)

Abstract

As an essential part of daily life, commuting produces considerable carbon emissions and is currently receiving increased amounts of attention. Comprehensive explorations of carbon emissions and the spatial distribution of their effects based on previous studies are lacking. First, we adopt stepwise regression and geographically weighted regression (GWR) to explore the diverse impacts of carbon emissions on the different layers of metropolitan areas, employing factors from the perspectives of socioeconomics, transportation services, and road networks. Our findings show that optimizing the road network structure could be an effective approach to reducing carbon emissions from commuting, especially in the periphery of metropolitan areas. In addition, the mixed use of land contributes to reducing carbon emissions from commuting, especially in the central areas. Thus, the coverage of public transport should be improved, especially in peripheral regions. Policymakers should monitor the spatial heterogeneity of variables and develop suitable policies to adapt to the conditions of the different layers of metropolitan areas.

Suggested Citation

  • Xin Li & Jiayue Zhang & Wenna Zhang & Yue Tan, 2024. "Spatial Heterogeneity Analysis of Factors on Commuting Carbon Emissions: Evidence from the Shenzhen Metropolitan Area in China," Sustainability, MDPI, vol. 16(11), pages 1-17, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4397-:d:1399822
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/11/4397/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/11/4397/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andersen, Poul H. & Mathews, John A. & Rask, Morten, 2009. "Integrating private transport into renewable energy policy: The strategy of creating intelligent recharging grids for electric vehicles," Energy Policy, Elsevier, vol. 37(7), pages 2481-2486, July.
    2. Ahmed El-Geneidy & Michael Grimsrud & Rania Wasfi & Paul Tétreault & Julien Surprenant-Legault, 2014. "New evidence on walking distances to transit stops: identifying redundancies and gaps using variable service areas," Transportation, Springer, vol. 41(1), pages 193-210, January.
    3. Yuanqing Wang & Liu Yang & Sunsheng Han & Chao Li & T. V. Ramachandra, 2017. "Urban CO2 emissions in Xi’an and Bangalore by commuters: implications for controlling urban transportation carbon dioxide emissions in developing countries," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(7), pages 993-1019, October.
    4. Kang‐Rae Ma & David Banister, 2006. "Excess Commuting: A Critical Review," Transport Reviews, Taylor & Francis Journals, vol. 26(6), pages 749-767, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boisjoly, Geneviève & Serra, Bernardo & Oliveira, Gabriel T. & El-Geneidy, Ahmed, 2020. "Accessibility measurements in São Paulo, Rio de Janeiro, Curitiba and Recife, Brazil," Journal of Transport Geography, Elsevier, vol. 82(C).
    2. Kley, Fabian & Lerch, Christian & Dallinger, David, 2011. "New business models for electric cars--A holistic approach," Energy Policy, Elsevier, vol. 39(6), pages 3392-3403, June.
    3. Verhetsel, Ann & Vanelslander, Thierry, 2010. "What location policy can bring to sustainable commuting: an empirical study in Brussels and Flanders, Belgium," Journal of Transport Geography, Elsevier, vol. 18(6), pages 691-701.
    4. Xue, Fei & Yao, Enjian, 2022. "Impact analysis of residential relocation on ownership, usage, and carbon-dioxide emissions of private cars," Energy, Elsevier, vol. 252(C).
    5. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    6. Giménez-Nadal, José Ignacio & Velilla, Jorge & Ortega-Lapiedra, Raquel, 2024. "Differences in commuting between employee and self-employed workers: The case of Latin America," Journal of Transport Geography, Elsevier, vol. 114(C).
    7. Tim Benijts, 2014. "A Business Sustainability Model for Government Corporations. A Belgian Case Study," Business Strategy and the Environment, Wiley Blackwell, vol. 23(3), pages 204-216, March.
    8. Manout, Ouassim & Bonnel, Patrick & Bouzouina, Louafi, 2018. "Transit accessibility: A new definition of transit connectors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 88-100.
    9. Chandra, Shailesh & Jimenez, Jose & Radhakrishnan, Ramalingam, 2017. "Accessibility evaluations for nighttime walking and bicycling for low-income shift workers," Journal of Transport Geography, Elsevier, vol. 64(C), pages 97-108.
    10. Giménez-Nadal, José Ignacio & Velilla, Jorge & Ortega, Raquel, 2022. "Revisiting excess commuting and self-employment: The case of Latin America," GLO Discussion Paper Series 1179, Global Labor Organization (GLO).
    11. Kim, Junghun & Seung, Hyunchan & Lee, Jongsu & Ahn, Joongha, 2020. "Asymmetric preference and loss aversion for electric vehicles: The reference-dependent choice model capturing different preference directions," Energy Economics, Elsevier, vol. 86(C).
    12. Sangeetha Ann & Meilan Jiang & Ghasak Ibrahim Mothafer & Toshiyuki Yamamoto, 2019. "Examination on the Influence Area of Transit-Oriented Development: Considering Multimodal Accessibility in New Delhi, India," Sustainability, MDPI, vol. 11(9), pages 1-20, May.
    13. Galus, Matthias D. & Zima, Marek & Andersson, Göran, 2010. "On integration of plug-in hybrid electric vehicles into existing power system structures," Energy Policy, Elsevier, vol. 38(11), pages 6736-6745, November.
    14. Riccardo Iacobucci & Benjamin McLellan & Tetsuo Tezuka, 2018. "The Synergies of Shared Autonomous Electric Vehicles with Renewable Energy in a Virtual Power Plant and Microgrid," Energies, MDPI, vol. 11(8), pages 1-20, August.
    15. Mulley, Corinne & Ho, Chinh & Ho, Loan & Hensher, David & Rose, John, 2018. "Will bus travellers walk further for a more frequent service? An international study using a stated preference approach," Transport Policy, Elsevier, vol. 69(C), pages 88-97.
    16. Gimenez-Nadal, José Ignacio & Molina, José Alberto & Velilla, Jorge, 2016. "A Wage-Efficiency Spatial Model for US Self-Employed Workers," IZA Discussion Papers 9634, Institute of Labor Economics (IZA).
    17. Cheng, Lin & Chen, Chen & Xiu, Chunliang, 2017. "Excess kindergarten travel in Changchun, Northeast China: A measure of residence-kindergarten spatial mismatch," Journal of Transport Geography, Elsevier, vol. 60(C), pages 208-216.
    18. Bellekom, Sandra & Benders, René & Pelgröm, Steef & Moll, Henk, 2012. "Electric cars and wind energy: Two problems, one solution? A study to combine wind energy and electric cars in 2020 in The Netherlands," Energy, Elsevier, vol. 45(1), pages 859-866.
    19. Schill, Wolf-Peter, 2011. "Electric Vehicles in Imperfect Electricity Markets: The case of Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 39(10), pages 6178-6189.
    20. Rodrigo Victoriano-Habit & Ahmed El-Geneidy, 2024. "Studying the Interrelationship between Telecommuting during COVID-19, residential local accessibility, and active travel: a panel study in Montréal, Canada," Transportation, Springer, vol. 51(3), pages 1149-1166, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4397-:d:1399822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.