IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i10p3989-d1391743.html
   My bibliography  Save this article

Multi-Objective Evcuation Planning Model Considering Post-Earthquake Fire Spread: A Tokyo Case Study

Author

Listed:
  • Kai Tang

    (Department of Architecture and Building Engineering, School of Environment and Society, Tokyo Institute of Technology, Tokyo 152-8550, Japan)

  • Toshihiro Osaragi

    (Department of Architecture and Building Engineering, School of Environment and Society, Tokyo Institute of Technology, Tokyo 152-8550, Japan)

Abstract

As an integral part of the 2030 Agenda for Sustainable Development, Disaster Risk Reduction (DRR) is essential for human safety and city sustainability. In recent years, natural disasters, which have had a tremendous negative impact on economic and social development, have frequently occurred in cities. As one of these devastating disasters, earthquakes can severely damage the achievements of urban development and impact the sustainable development of cities. To prepare for potential large earthquakes in the future, efficient evacuation plans need to be developed to enhance evacuation efficiency and minimize casualties. Most previous research focuses on minimization of distance or cost while ignoring risk factors. We propose a multi-objective optimization model with the goal of reducing the risk during the evacuation process, which is called the risk reduction model (RRM). Problem-specific indicators for screening optimal solutions are introduced. The research selects the Ogu area in Tokyo as a case study, where there is a relatively high density of wooden structures, increasing the risks of building collapse and fire spread after an earthquake, and is based on a two-phase evacuation flow that considers secondary evacuation for fire response. The results indicate that, in this case, RRM can, in most situations, reduce the risk level during the evacuation process and improve evacuation efficiency and success rate without significantly increasing the total evacuation distance. It proves to be superior to the traditional distance minimization model (DMM), which prioritizes minimizing the total distance as the objective function.

Suggested Citation

  • Kai Tang & Toshihiro Osaragi, 2024. "Multi-Objective Evcuation Planning Model Considering Post-Earthquake Fire Spread: A Tokyo Case Study," Sustainability, MDPI, vol. 16(10), pages 1-22, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:3989-:d:1391743
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/10/3989/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/10/3989/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vedat Bayram & Hande Yaman, 2018. "Shelter Location and Evacuation Route Assignment Under Uncertainty: A Benders Decomposition Approach," Transportation Science, INFORMS, vol. 52(2), pages 416-436, March.
    2. Kılcı, Fırat & Kara, Bahar Yetiş & Bozkaya, Burçin, 2015. "Locating temporary shelter areas after an earthquake: A case for Turkey," European Journal of Operational Research, Elsevier, vol. 243(1), pages 323-332.
    3. Jianxiu Wang & Xueying Gu & Tianrong Huang, 2013. "Using Bayesian networks in analyzing powerful earthquake disaster chains," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 509-527, September.
    4. Esposito Amideo, A. & Scaparra, M.P. & Kotiadis, K., 2019. "Optimising shelter location and evacuation routing operations: The critical issues," European Journal of Operational Research, Elsevier, vol. 279(2), pages 279-295.
    5. Li, Lingfeng & Jin, Mingzhou & Zhang, Li, 2011. "Sheltering network planning and management with a case in the Gulf Coast region," International Journal of Production Economics, Elsevier, vol. 131(2), pages 431-440, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamoud Bin Obaid & Theodore B. Trafalis & Mastoor M. Abushaega & Abdulhadi Altherwi & Ahmed Hamzi, 2024. "Optimizing Dynamic Evacuation Using Mixed-Integer Linear Programming," Mathematics, MDPI, vol. 13(1), pages 1-25, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Levent Eriskin & Mumtaz Karatas, 2024. "Applying robust optimization to the shelter location–allocation problem: a case study for Istanbul," Annals of Operations Research, Springer, vol. 339(3), pages 1589-1635, August.
    2. Kınay, Ömer Burak & Yetis Kara, Bahar & Saldanha-da-Gama, Francisco & Correia, Isabel, 2018. "Modeling the shelter site location problem using chance constraints: A case study for Istanbul," European Journal of Operational Research, Elsevier, vol. 270(1), pages 132-145.
    3. Yang, Wenjie & Caunhye, Aakil M. & Zhuo, Maolin & Wang, Qingyi, 2024. "Integrated planning of emergency supply pre-positioning and victim evacuation," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).
    4. Wang, Qingyi & Wallace, Stein W., 2022. "Non-compliance in transit-based evacuation pick-up point assignments," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    5. Li, Yuchen & Zhang, Jianghua & Yu, Guodong, 2020. "A scenario-based hybrid robust and stochastic approach for joint planning of relief logistics and casualty distribution considering secondary disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    6. Jin, Jian Gang & Shen, Yifan & Hu, Hao & Fan, Yiqun & Yu, Mingjian, 2021. "Optimizing underground shelter location and mass pedestrian evacuation in urban community areas: A case study of Shanghai," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 124-138.
    7. Soheyl Khalilpourazari & Seyed Hamid Reza Pasandideh, 2021. "Designing emergency flood evacuation plans using robust optimization and artificial intelligence," Journal of Combinatorial Optimization, Springer, vol. 41(3), pages 640-677, April.
    8. Zhang, Guowei & Zhu, Ning & Ma, Shoufeng & Xia, Jun, 2021. "Humanitarian relief network assessment using collaborative truck-and-drone system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    9. Shaoqing Geng & Yu Gong & Hanping Hou & Jianliang Yang & Bhakti Stephan Onggo, 2024. "Resource management in disaster relief: a bibliometric and content-analysis-based literature review," Annals of Operations Research, Springer, vol. 343(1), pages 263-292, December.
    10. Jafarzadeh-Ghoushchi, Saeid & Asghari, Mohammad & Mardani, Abbas & Simic, Vladimir & Tirkolaee, Erfan Babaee, 2023. "Designing an efficient humanitarian supply chain network during an emergency: A scenario-based multi-objective model," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
    11. Gutjahr, Walter J., 2021. "Inequity-averse stochastic decision processes," European Journal of Operational Research, Elsevier, vol. 288(1), pages 258-270.
    12. Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).
    13. Reza Asriandi Ekaputra & Changkye Lee & Seong-Hoon Kee & Jurng-Jae Yee, 2022. "Emergency Shelter Geospatial Location Optimization for Flood Disaster Condition: A Review," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    14. Liu, Kanglin & Liu, Changchun & Xiang, Xi & Tian, Zhili, 2023. "Testing facility location and dynamic capacity planning for pandemics with demand uncertainty," European Journal of Operational Research, Elsevier, vol. 304(1), pages 150-168.
    15. Huang, Sen & Liu, Kanglin & Zhang, Zhi-Hai, 2023. "Column-and-constraint-generation-based approach to a robust reverse logistic network design for bike sharing," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 90-118.
    16. Yunjia Ma & Wei Xu & Lianjie Qin & Xiujuan Zhao, 2019. "Site Selection Models in Natural Disaster Shelters: A Review," Sustainability, MDPI, vol. 11(2), pages 1-24, January.
    17. Saldanha-da-Gama, Francisco, 2022. "Facility Location in Logistics and Transportation: An enduring relationship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    18. S. M. Amin Hosseini & Rama Ghalambordezfooly & Albert de la Fuente, 2022. "Sustainability Model to Select Optimal Site Location for Temporary Housing Units: Combining GIS and the MIVES–Knapsack Model," Sustainability, MDPI, vol. 14(8), pages 1-23, April.
    19. Arisa Yasui & Muneyoshi Numada & Makoto Bando & Shintaro Nakano & Chaitanya Krishna, 2020. "A Study on the Current Situation of Prearranged Shelter Management in Japan for Making a Standard Operation Procedure," IJERPH, MDPI, vol. 17(24), pages 1-18, December.
    20. Afshin Kamyabniya & Antoine Sauré & F. Sibel Salman & Noureddine Bénichou & Jonathan Patrick, 2024. "Optimization models for disaster response operations: a literature review," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(3), pages 737-783, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:3989-:d:1391743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.