Designing Isolation Valve System to Prevent Unexpected Water Quality Incident
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- E. Creaco & M. Franchini & S. Alvisi, 2012. "Evaluating Water Demand Shortfalls in Segment Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2301-2321, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zarghami, Seyed Ashkan & Gunawan, Indra & Schultmann, Frank, 2018. "Integrating entropy theory and cospanning tree technique for redundancy analysis of water distribution networks," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 102-112.
- Salah Saleh & Tiku T. Tanyimboh, 2016. "Multi-Directional Maximum-Entropy Approach to the Evolutionary Design Optimization of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(6), pages 1885-1901, April.
- E. Pacchin & S. Alvisi & M. Franchini, 2017. "Analysis of Non-Iterative Methods and Proposal of a New One for Pressure-Driven Snapshot Simulations with EPANET," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 75-91, January.
- Tiku T. Tanyimboh & Anna M. Czajkowska, 2021. "Entropy maximizing evolutionary design optimization of water distribution networks under multiple operating conditions," Environment Systems and Decisions, Springer, vol. 41(2), pages 267-285, June.
- Richárd Wéber & Tamás Huzsvár & Ákos Déllei & Csaba Hős, 2023. "Criticality of Isolation Valves in Water Distribution Networks with Hydraulics and Topology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 2181-2193, March.
- Tiku T. Tanyimboh & Anna M. Czajkowska, 2018. "Joint Entropy Based Multi-Objective Evolutionary Optimization of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2569-2584, June.
More about this item
Keywords
water quality failure; flow direction change; risk pipe; pipe failure; segment isolation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:153-:d:1305940. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.