IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i9p7637-d1140641.html
   My bibliography  Save this article

Optimal Traffic Signal Control Using Priority Metric Based on Real-Time Measured Traffic Information

Author

Listed:
  • Minjung Kim

    (Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA)

  • Max Schrader

    (Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA)

  • Hwan-Sik Yoon

    (Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA)

  • Joshua A. Bittle

    (Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA)

Abstract

Optimizing traffic control systems at traffic intersections can reduce network-wide fuel consumption as well as improve traffic flow. While traffic signals have conventionally been controlled based on predetermined schedules, various adaptive control systems have been developed recently using advanced sensors such as cameras, radars, and LiDARs. By utilizing rich traffic information enabled by the advanced sensors, more efficient or optimal traffic signal control is possible in response to varying traffic conditions. This paper proposes an optimal traffic signal control method to minimize network-wide fuel consumption utilizing real-time traffic information provided by advanced sensors. This new method employs a priority metric calculated by a weighted sum of various factors, including the total number of vehicles, total vehicle speed, vehicle waiting time, and road preference. Genetic Algorithm (GA) is used as a global optimization method to determine the optimal weights in the priority metric. In order to evaluate the effectiveness of the proposed method, a traffic simulation model is developed in a high-fidelity traffic simulation environment called SUMO, based on a real-world traffic network. The traffic flow within this model is simulated using actual measured traffic data from the traffic network, enabling a comprehensive assessment of the novel optimal traffic signal control method in realistic conditions. The simulation results show that the proposed priority metric-based real-time traffic signal control algorithm can significantly reduce network-wide fuel consumption compared to the conventional fixed-time control and coordinated actuated control methods that are currently used in the modeled network. Additionally, incorporating truck priority in the priority metric leads to further improvements in fuel consumption reduction.

Suggested Citation

  • Minjung Kim & Max Schrader & Hwan-Sik Yoon & Joshua A. Bittle, 2023. "Optimal Traffic Signal Control Using Priority Metric Based on Real-Time Measured Traffic Information," Sustainability, MDPI, vol. 15(9), pages 1-18, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7637-:d:1140641
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/9/7637/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/9/7637/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Min Li & Dijia Luo & Bilong Liu & Xilong Zhang & Zhen Liu & Mengshan Li, 2022. "Arterial Coordination Control Optimization Based on AM–BAND–PBAND Model," Sustainability, MDPI, vol. 14(16), pages 1-24, August.
    2. Vishal Mandal & Abdul Rashid Mussah & Peng Jin & Yaw Adu-Gyamfi, 2020. "Artificial Intelligence-Enabled Traffic Monitoring System," Sustainability, MDPI, vol. 12(21), pages 1-21, November.
    3. Mohammed Al-Turki & Arshad Jamal & Hassan M. Al-Ahmadi & Mohammed A. Al-Sughaiyer & Muhammad Zahid, 2020. "On the Potential Impacts of Smart Traffic Control for Delay, Fuel Energy Consumption, and Emissions: An NSGA-II-Based Optimization Case Study from Dhahran, Saudi Arabia," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miroslav Vujić & Martin Gregurić & Luka Dedić & Daniela Koltovska Nečoska, 2023. "The Impact of Unconditional Priority for Escorted Vehicles in Traffic Networks on Sustainable Urban Mobility," Sustainability, MDPI, vol. 16(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suhaib Alshayeb & Aleksandar Stevanovic & Nikola Mitrovic & Elio Espino, 2022. "Traffic Signal Optimization to Improve Sustainability: A Literature Review," Energies, MDPI, vol. 15(22), pages 1-24, November.
    2. Maksymilian Mądziel, 2023. "Vehicle Emission Models and Traffic Simulators: A Review," Energies, MDPI, vol. 16(9), pages 1-31, May.
    3. Andrzej Paszkiewicz & Bartosz Pawłowicz & Bartosz Trybus & Mateusz Salach, 2021. "Traffic Intersection Lane Control Using Radio Frequency Identification and 5G Communication," Energies, MDPI, vol. 14(23), pages 1-17, December.
    4. Moneim Massar & Imran Reza & Syed Masiur Rahman & Sheikh Muhammad Habib Abdullah & Arshad Jamal & Fahad Saleh Al-Ismail, 2021. "Impacts of Autonomous Vehicles on Greenhouse Gas Emissions—Positive or Negative?," IJERPH, MDPI, vol. 18(11), pages 1-23, May.
    5. Abdul Rashid Mussah & Yaw Adu-Gyamfi, 2022. "Machine Learning Framework for Real-Time Assessment of Traffic Safety Utilizing Connected Vehicle Data," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    6. Angel Jaramillo-Alcazar & Jaime Govea & William Villegas-Ch, 2023. "Advances in the Optimization of Vehicular Traffic in Smart Cities: Integration of Blockchain and Computer Vision for Sustainable Mobility," Sustainability, MDPI, vol. 15(22), pages 1-23, November.
    7. Muhammad Safdar & Arshad Jamal & Hassan M. Al-Ahmadi & Muhammad Tauhidur Rahman & Meshal Almoshaogeh, 2022. "Analysis of the Influential Factors towards Adoption of Car-Sharing: A Case Study of a Megacity in a Developing Country," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
    8. Arshad Jamal & Waleed Umer, 2020. "Exploring the Injury Severity Risk Factors in Fatal Crashes with Neural Network," IJERPH, MDPI, vol. 17(20), pages 1-22, October.
    9. Jun Du & Bin Jia & Shiteng Zheng, 2022. "Stability Analysis of Continuous Stochastic Linear Model," Sustainability, MDPI, vol. 14(5), pages 1-13, March.
    10. Mohammed Saleh Alfawzan & Ahmad Aftab, 2022. "Efficiency Assessment of New Signal Timing in Saudi Arabia Implementing Flashing Green Interval Complimented with Law Enforcement Cameras," Sustainability, MDPI, vol. 14(22), pages 1-15, November.
    11. Sun, Bin & Zhang, Qijun & Wei, Ning & Jia, Zhenyu & Li, Chunming & Mao, Hongjun, 2022. "The energy flow of moving vehicles for different traffic states in the intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    12. Taraneh Ardalan & Denis Sarazhinsky & Nemanja Dobrota & Aleksandar Stevanovic, 2024. "Investigation of Analyzable Solutions for Left-Turn-Centered Congestion Problems in Urban Grid Networks," Sustainability, MDPI, vol. 16(11), pages 1-24, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7637-:d:1140641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.