IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i9p7038-d1130251.html
   My bibliography  Save this article

Multi-Model Rice Canopy Chlorophyll Content Inversion Based on UAV Hyperspectral Images

Author

Listed:
  • Hanhu Liu

    (College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China)

  • Xiangqi Lei

    (College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China)

  • Hui Liang

    (China Oil & Gas Pipeline Engineering Co., Langfang 065000, China)

  • Xiao Wang

    (College of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China)

Abstract

Rice is China’s main crop and its output accounts for 30% of the world’s total annual rice production. Rice growth status is closely related to chlorophyll content (called Soil and Plant Analyzer Development (SPAD) values). The determination of a SPAD value is of great significance to the health status of rice, agricultural irrigation and regulated fertilization. The traditional SPAD value measurement method is not only time-consuming, laborious and expensive but also causes irreparable damage to vegetation. The main aim of the present study is to obtain a SPAD value through the inversion of hyperspectral remote sensing images. In order to achieve this purpose, the hyperspectral image of rice at different growth stages at the canopy scale was first acquired using a hyperspectral imaging instrument equipped with a drone; the spectral characteristics of the rice canopy at different growth stages were analyzed and combined with a ground-level measured SPAD value, the bands with high correlation between the SPAD values and the spectra of the rice canopy at different fertility stages were selected. Subsequently, we combined the spectral characteristics with the continuous projection algorithm to extract the characteristic band and used the PLS method in MATLAB software to analyze and calculate the weight of each type of spectral value and the corresponding canopy SPAD value; we then used the wavelength corresponding to the spectral value with the highest weight as the used band. Secondly, the four methods of univariate regression, partial least squares (PLS) regression, support vector machine (SVM) regression and back propagation (BP) neural network regression are integrated to establish the estimation model of the SPAD value of rice canopy. Finally, the models are used to map the SPAD values of the rice canopy. Research shows that the model with the highest decision coefficient among the four booting stage models is “booting stage-SVR” ( R 2 = 0.6258), and the model with the highest decision coefficient among the four dairy maturity models is “milk-ripe stage-BP” ( R 2 = 0.6716), all of which can meet the requirement of accurately retrieving the SPAD value of rice canopy. The above results can provide a technical reference for the accurate, rapid and non-destructive monitoring of chlorophyll content in rice leaves and provide a core band selection basis for large-scale hyperspectral remote sensing monitoring of rice.

Suggested Citation

  • Hanhu Liu & Xiangqi Lei & Hui Liang & Xiao Wang, 2023. "Multi-Model Rice Canopy Chlorophyll Content Inversion Based on UAV Hyperspectral Images," Sustainability, MDPI, vol. 15(9), pages 1-22, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7038-:d:1130251
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/9/7038/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/9/7038/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qiaozhen Guo & Xiaoxu Wu & Qixuan Bing & Yingyang Pan & Zhiheng Wang & Ying Fu & Dongchuan Wang & Jianing Liu, 2016. "Study on Retrieval of Chlorophyll-a Concentration Based on Landsat OLI Imagery in the Haihe River, China," Sustainability, MDPI, vol. 8(8), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xi Zhu & Yansha Wen & Xiang Li & Feng Yan & Shuhe Zhao, 2023. "Remote Sensing Inversion of Typical Water Quality Parameters of a Complex River Network: A Case Study of Qidong’s Rivers," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    2. Miguel Ángel Matus-Hernández & Norma Yolanda Hernández-Saavedra & Raúl Octavio Martínez-Rincón, 2018. "Predictive performance of regression models to estimate Chlorophyll-a concentration based on Landsat imagery," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-18, October.
    3. Tainá T. Guimarães & Maurício R. Veronez & Emilie C. Koste & Eniuce M. Souza & Diego Brum & Luiz Gonzaga & Frederico F. Mauad, 2019. "Evaluation of Regression Analysis and Neural Networks to Predict Total Suspended Solids in Water Bodies from Unmanned Aerial Vehicle Images," Sustainability, MDPI, vol. 11(9), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7038-:d:1130251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.