IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i8p6864-d1127240.html
   My bibliography  Save this article

Impact of Urbanization on Groundwater and Surface Temperature Changes: A Case Study of Lahore City

Author

Listed:
  • Huzaifah Zahran

    (Department of Civil Engineering, Islamic International University, Islamabad 44000, Pakistan)

  • Muhammad Zeeshan Ali

    (Department of Civil Engineering, Islamic International University, Islamabad 44000, Pakistan)

  • Khan Zaib Jadoon

    (Department of Civil Engineering, Islamic International University, Islamabad 44000, Pakistan)

  • Hammad Ullah Khan Yousafzai

    (Department of Civil Engineering, Islamic International University, Islamabad 44000, Pakistan)

  • Khalil Ur Rahman

    (State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China)

  • Nadeem Ahmed Sheikh

    (Department of Mechanical Engineering, Islamic International University, Islamabad 44000, Pakistan)

Abstract

The over-exploitation of groundwater resources is a significant concern due to the potential risks associated with the depletion of this valuable freshwater source. Future planning must consider changes in groundwater availability and urban expansion which are critical for understanding urban growth patterns. This study aims to investigate the impact of land cover change on groundwater depletion. Further, the Land surface temperature (LST) analysis has been performed to find the spatial spread of urbanization and its impact on surface temperature. The Gravity Recovery and Climate Experiment (GRACE) data for groundwater storage monitoring and Landsat data for land cover and LST mapping have been used. The GRACE-based Groundwater Storage (GWS) anomaly has been correlated with Tropical Rainfall Measuring Mission (TRMM)-based precipitation data. The GWS is further cross validated with the groundwater monitoring stations in the study area and the correlation of 0.7 is found. The time series analysis of GWS and the land cover maps with a decadal interval from 1990 to 2020 has been developed to find the impact of groundwater change due to urbanization. The results demonstrate a rapid increase in groundwater depletion and urbanization rates over the past decade. The LST spatial pattern is increasing similarly with the study area’s urban expansion, indicating the temperature rise due to urbanization. The study highlights the limitation of effective policies to regulate groundwater extraction in urban areas and the importance of proper planning to ensure the long-term sustainability of freshwater resources.

Suggested Citation

  • Huzaifah Zahran & Muhammad Zeeshan Ali & Khan Zaib Jadoon & Hammad Ullah Khan Yousafzai & Khalil Ur Rahman & Nadeem Ahmed Sheikh, 2023. "Impact of Urbanization on Groundwater and Surface Temperature Changes: A Case Study of Lahore City," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6864-:d:1127240
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/8/6864/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/8/6864/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Akhtar Rehman & Jun Qin & Amjad Pervez & Muhammad Sadiq Khan & Siddique Ullah & Khalid Ahmad & Nazir Ur Rehman, 2022. "Land-Use/Land Cover Changes Contribute to Land Surface Temperature: A Case Study of the Upper Indus Basin of Pakistan," Sustainability, MDPI, vol. 14(2), pages 1-15, January.
    2. Matthew Rodell & Isabella Velicogna & James S. Famiglietti, 2009. "Satellite-based estimates of groundwater depletion in India," Nature, Nature, vol. 460(7258), pages 999-1002, August.
    3. Hone-Jay Chu & Chun-Yu Liu & Chi-Kuei Wang, 2013. "Identifying the Relationships between Water Quality and Land Cover Changes in the Tseng-Wen Reservoir Watershed of Taiwan," IJERPH, MDPI, vol. 10(2), pages 1-12, January.
    4. Menglin Zhang & Yanguo Teng & Yazhen Jiang & Wenjie Yin & Xuelei Wang & Dasheng Zhang & Jinfeng Liao, 2022. "Evaluation of Terrestrial Water Storage Changes over China Based on GRACE Solutions and Water Balance Method," Sustainability, MDPI, vol. 14(18), pages 1-20, September.
    5. Chauncy D. Harris & Edward L. Ullman, 1945. "The Nature of Cities," The ANNALS of the American Academy of Political and Social Science, , vol. 242(1), pages 7-17, November.
    6. Yi Guo & Fuping Gan & Baikun Yan & Juan Bai & Feng Wang & Ruirui Jiang & Naichen Xing & Qi Liu, 2022. "Evaluation of Groundwater Storage Depletion Using GRACE / GRACE Follow-On Data with Land Surface Models and Its Driving Factors in Haihe River Basin, China," Sustainability, MDPI, vol. 14(3), pages 1-21, January.
    7. Scott Moore & Joshua Fisher, 2012. "Challenges and Opportunities in GRACE-Based Groundwater Storage Assessment and Management: An Example from Yemen," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1425-1453, April.
    8. Gulraiz Akhter & Yonggang Ge & Naveed Iqbal & Yanjun Shang & Muhammad Hasan, 2021. "Appraisal of Remote Sensing Technology for Groundwater Resource Management Perspective in Indus Basin," Sustainability, MDPI, vol. 13(17), pages 1-12, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meena, Raj Pal & Karnam, Venkatesh & R, Sendhil & Rinki, & Sharma, R.K. & Tripathi, S.C. & Singh, Gyanendra Pratap, 2019. "Identification of water use efficient wheat genotypes with high yield for regions of depleting water resources in India," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    2. Valbuena, Diego & Tui, Sabine Homann-Kee & Erenstein, Olaf & Teufel, Nils & Duncan, Alan & Abdoulaye, Tahirou & Swain, Braja & Mekonnen, Kindu & Germaine, Ibro & Gérard, Bruno, 2015. "Identifying determinants, pressures and trade-offs of crop residue use in mixed smallholder farms in Sub-Saharan Africa and South Asia," Agricultural Systems, Elsevier, vol. 134(C), pages 107-118.
    3. Yusuke Kuwayama, 2019. "Policy Note: "Opportunities and Challenges of Using Satellite Data to Inform Water Policy"," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-9, July.
    4. Bahi, Dhilanveer Teja Singh & Paavola, Jouni, 2023. "Liquid petroleum gas access and consumption expenditure: measuring energy poverty through wellbeing and gender equality in India," LSE Research Online Documents on Economics 120564, London School of Economics and Political Science, LSE Library.
    5. Sriroop Chaudhuri & Mimi Roy & Louis M. McDonald & Yves Emendack, 2021. "Reflections on farmers’ social networks: a means for sustainable agricultural development?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 2973-3008, March.
    6. Shah, M., 2018. "Reforming India’s water governance to meet 21st century challenges: practical pathways to realizing the vision of the Mihir Shah Committee," IWMI Working Papers H049192, International Water Management Institute.
    7. Weixing Ma & Tinglin Huang & Xuan Li & Zizhen Zhou & Yang Li & Kang Zeng, 2015. "The Effects of Storm Runoff on Water Quality and the Coping Strategy of a Deep Canyon-Shaped Source Water Reservoir in China," IJERPH, MDPI, vol. 12(7), pages 1-17, July.
    8. Jayanta Das & A. T. M. Sakiur Rahman & Tapash Mandal & Piu Saha, 2021. "Exploring driving forces of large-scale unsustainable groundwater development for irrigation in lower Ganga River basin in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7289-7309, May.
    9. Rajat Agarwal & P. K. Garg, 2016. "Remote Sensing and GIS Based Groundwater Potential & Recharge Zones Mapping Using Multi-Criteria Decision Making Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 243-260, January.
    10. Abdulaziz Alqahtani & Tom Sale & Michael J. Ronayne & Courtney Hemenway, 2021. "Demonstration of Sustainable Development of Groundwater through Aquifer Storage and Recovery (ASR)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 429-445, January.
    11. Prathapar, S. & Dhar, S. & Rao, G. Tamma & Maheshwari, B., 2015. "Performance and impacts of managed aquifer recharge interventions for agricultural water security: A framework for evaluation," Agricultural Water Management, Elsevier, vol. 159(C), pages 165-175.
    12. Moussa Bruno Kafando & Mahamadou Koïta & Cheick Oumar Zouré & Roland Yonaba & Dial Niang, 2022. "Quantification of Soil Deep Drainage and Aquifer Recharge Dynamics according to Land Use and Land Cover in the Basement Zone of Burkina Faso in West Africa," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    13. Pennan Chinnasamy & Govindasamy Agoramoorthy, 2015. "Groundwater Storage and Depletion Trends in Tamil Nadu State, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2139-2152, May.
    14. Qifeng Huang & Longhuan Wang & Binghao Jia & Xin Lai & Qing Peng, 2023. "Impact of Climate Change on the Spatio-Temporal Variation in Groundwater Storage in the Guangdong–Hong Kong–Macao Greater Bay Area," Sustainability, MDPI, vol. 15(14), pages 1-18, July.
    15. Rajat Agarwal & P. Garg, 2016. "Remote Sensing and GIS Based Groundwater Potential & Recharge Zones Mapping Using Multi-Criteria Decision Making Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 243-260, January.
    16. Madhumita Sahoo & Aman Kasot & Anirban Dhar & Amlanjyoti Kar, 2018. "On Predictability of Groundwater Level in Shallow Wells Using Satellite Observations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1225-1244, March.
    17. Qianhan Wu & Linghong Ke & Jida Wang & Tamlin M. Pavelsky & George H. Allen & Yongwei Sheng & Xuejun Duan & Yunqiang Zhu & Jin Wu & Lei Wang & Kai Liu & Tan Chen & Wensong Zhang & Chenyu Fan & Bin Yon, 2023. "Satellites reveal hotspots of global river extent change," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Alam, Mohammad Faiz & Pavelic, Paul, 2020. "Underground Transfer of Floods for Irrigation (UTFI): exploring potential at the global scale," IWMI Research Reports H050008, International Water Management Institute.
    19. Awada, Hassan & Di Prima, Simone & Sirca, Costantino & Giadrossich, Filippo & Marras, Serena & Spano, Donatella & Pirastru, Mario, 2022. "A remote sensing and modeling integrated approach for constructing continuous time series of daily actual evapotranspiration," Agricultural Water Management, Elsevier, vol. 260(C).
    20. Dhilanveer Teja Singh Bahi & Jouni Paavola, 2024. "Liquefied Petroleum Gas Access and Consumption Expenditure: Measuring Energy Poverty through Wellbeing and Gender Equality in India," Sustainability, MDPI, vol. 16(8), pages 1-26, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6864-:d:1127240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.