IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i8p6379-d1118539.html
   My bibliography  Save this article

Numerical Analysis of the Racking Behaviour of Multi-Storey Timber-Framed Buildings Considering Load-Bearing Function of Double-Skin Façade Elements

Author

Listed:
  • Miroslav Premrov

    (Faculty of Civil Engineering, Transportation Engineering and Architecture, University of Maribor, 2000 Maribor, Slovenia)

  • Erika Kozem Šilih

    (Faculty of Civil Engineering, Transportation Engineering and Architecture, University of Maribor, 2000 Maribor, Slovenia)

Abstract

The paper presents an innovative approach in the modelling of multi-storey timber-framed buildings, where double-skin façade elements (DSF) are additionally considered as load-bearing wall elements against a horizontal load impact. The mathematical model with a fictive diagonal element developed for timber-framed wall elements with classical oriented strand boards (OSB) or fibre–plaster sheathing boards (FPB) is upgraded for DSF elements. The diameter of the fictive diagonal is determined with either experimental results or numerically obtained results using the time-consuming FEM model with elastic spring elements, which simulates the bonding line between the timber frame and both glazing panes. In the second part of the study, the numerical analysis of a specially selected three-storey timber-framed building was performed using the developed mathematical model with fictive diagonal elements. Two alternative calculations were performed with the DSF elements as non-resisting and racking-resisting wall elements. It was demonstrated on the selected case that the racking resistance (R) of a building can essentially increase up to 35% if DSF elements are considered as resisting wall elements. As a secondary goal of the study, it is also important to point out that by using DSF elements as racking-resisting elements, the distortion in the first floor essentially decreased. It is demonstrated on the selected numerical example that this torsional influence decreased notably (by almost 18%) when the load-bearing DSF elements were used for seismic excitation in the X direction. Therefore, such an approach can open new perspectives in designing multi-storey timber-framed buildings with a more attractive and dynamic floor plan and structure.

Suggested Citation

  • Miroslav Premrov & Erika Kozem Šilih, 2023. "Numerical Analysis of the Racking Behaviour of Multi-Storey Timber-Framed Buildings Considering Load-Bearing Function of Double-Skin Façade Elements," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6379-:d:1118539
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/8/6379/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/8/6379/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ghaffarianhoseini, Ali & Ghaffarianhoseini, Amirhosein & Berardi, Umberto & Tookey, John & Li, Danny Hin Wa & Kariminia, Shahab, 2016. "Exploring the advantages and challenges of double-skin façades (DSFs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1052-1065.
    2. Saroglou, Tanya & Theodosiou, Theodoros & Givoni, Baruch & Meir, Isaac A., 2019. "A study of different envelope scenarios towards low carbon high-rise buildings in the Mediterranean climate - can DSF be part of the solution?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Dehwah, Ammar H.A. & Krarti, Moncef, 2021. "Energy performance of integrated adaptive envelope systems for residential buildings," Energy, Elsevier, vol. 233(C).
    3. Tao, Yao & Yan, Yihuan & Tu, Jiyuan & Shi, Long, 2024. "Impact of wind on solar-induced natural ventilation through double-skin facade," Applied Energy, Elsevier, vol. 364(C).
    4. Yang, Sungwoong & Cho, Hyun Mi & Yun, Beom Yeol & Hong, Taehoon & Kim, Sumin, 2021. "Energy usage and cost analysis of passive thermal retrofits for low-rise residential buildings in Seoul," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Zhang, Xingxing & Lovati, Marco & Vigna, Ilaria & Widén, Joakim & Han, Mengjie & Gal, Csilla & Feng, Tao, 2018. "A review of urban energy systems at building cluster level incorporating renewable-energy-source (RES) envelope solutions," Applied Energy, Elsevier, vol. 230(C), pages 1034-1056.
    6. Halawa, Edward & Ghaffarianhoseini, Amirhosein & Ghaffarianhoseini, Ali & Trombley, Jeremy & Hassan, Norhaslina & Baig, Mirza & Yusoff, Safiah Yusmah & Azzam Ismail, Muhammad, 2018. "A review on energy conscious designs of building façades in hot and humid climates: Lessons for (and from) Kuala Lumpur and Darwin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2147-2161.
    7. Luo, Yongqiang & Zhang, Ling & Wang, Xiliang & Xie, Lei & Liu, Zhongbing & Wu, Jing & Zhang, Yelin & He, Xihua, 2017. "A comparative study on thermal performance evaluation of a new double skin façade system integrated with photovoltaic blinds," Applied Energy, Elsevier, vol. 199(C), pages 281-293.
    8. Zhu, Li & Zhang, Jiqiang & Li, Qingxiang & Shao, Zebiao & Chen, Mengdong & Yang, Yang & Sun, Yong, 2020. "Comprehensive analysis of heat transfer of double-skin facades integrated high concentration photovoltaic (CPV-DSF)," Renewable Energy, Elsevier, vol. 161(C), pages 635-649.
    9. Marvuglia, Antonino & Havinga, Lisanne & Heidrich, Oliver & Fonseca, Jimeno & Gaitani, Niki & Reckien, Diana, 2020. "Advances and challenges in assessing urban sustainability: an advanced bibliometric review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    10. Balali, Amirhossein & Yunusa-Kaltungo, Akilu & Edwards, Rodger, 2023. "A systematic review of passive energy consumption optimisation strategy selection for buildings through multiple criteria decision-making techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    11. Shafaghat, A. & Keyvanfar, A., 2022. "Dynamic façades design typologies, technologies, measurement techniques, and physical performances across thermal, optical, ventilation, and electricity generation outlooks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Ramkishore Singh & Dharam Buddhi & Samar Thapa & Chander Prakash & Rajesh Singh & Atul Sharma & Shane Sheoran & Kuldeep Kumar Saxena, 2022. "Sensitivity Analysis for Decisive Design Parameters for Energy and Indoor Visual Performances of a Glazed Façade Office Building," Sustainability, MDPI, vol. 14(21), pages 1-27, October.
    13. Sánchez, M.N. & Giancola, E. & Suárez, M.J. & Blanco, E. & Heras, M.R., 2017. "Experimental evaluation of the airflow behaviour in horizontal and vertical Open Joint Ventilated Facades using Stereo-PIV," Renewable Energy, Elsevier, vol. 109(C), pages 613-623.
    14. Luo, Yongqiang & Zhang, Ling & Bozlar, Michael & Liu, Zhongbing & Guo, Hongshan & Meggers, Forrest, 2019. "Active building envelope systems toward renewable and sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 470-491.
    15. GaneshKumar, Poongavanam & Sivalingam, VinothKumar & Vigneswaran, V.S. & Ramalingam, Velraj & Seong Cheol, Kim & Vanaraj, Ramkumar, 2024. "Spray cooling for hydrogen vehicle, electronic devices, solar and building (low temperature) applications: A state-of-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    16. Arabi, Pouria & Hamidpour, Mahmoud Reza & Yaghoubi, Mahmood & Arabi, Faraz, 2023. "Computational analysis of blind performance on natural ventilated double skin façade in winter," Energy, Elsevier, vol. 268(C).
    17. Georgios E. Arnaoutakis & Dimitris A. Katsaprakakis, 2021. "Energy Performance of Buildings with Thermochromic Windows in Mediterranean Climates," Energies, MDPI, vol. 14(21), pages 1-14, October.
    18. Su, Xiaosong & Zhang, Ling & Liu, Zhongbing & Luo, Yongqiang & Lian, Jinbu & Liang, Ping, 2020. "Daylighting performance simulation and analysis of translucent concrete building envelopes," Renewable Energy, Elsevier, vol. 154(C), pages 754-766.
    19. Saroglou, Tanya & Theodosiou, Theodoros & Givoni, Baruch & Meir, Isaac A., 2019. "A study of different envelope scenarios towards low carbon high-rise buildings in the Mediterranean climate - can DSF be part of the solution?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    20. Omrany, Hossein & Ghaffarianhoseini, Ali & Ghaffarianhoseini, Amirhosein & Raahemifar, Kaamran & Tookey, John, 2016. "Application of passive wall systems for improving the energy efficiency in buildings: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1252-1269.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6379-:d:1118539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.