IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i7p6085-d1113159.html
   My bibliography  Save this article

The Possibility of Achieving Zero CO 2 Emission in the Indonesian Cement Industry by 2050: A Stakeholder System Dynamic Perspective

Author

Listed:
  • Iman Junianto

    (Department of Sustainability Science, Graduate School, Universitas Padjadjaran, Dipati Ukur 35, Bandung 40132, Indonesia)

  • Sunardi

    (Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran. Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia)

  • Dadan Sumiarsa

    (Departement of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjajaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia)

Abstract

According to the SDG on climate change, Indonesia is expected to achieve net-zero emissions by 2060 or sooner, as outlined in the long-term low-carbon and climate resilience strategies implemented by the country’s president. Therefore, this research aims to apply the system dynamic model to simulate sustainable targets for CO 2 emission reductions until 2050. The simulation was limited to factors influencing the cement industry’s CO 2 , as described in the IEA’s recommendations, and the scenarios were based on the AHP (analytical hierarchy process) results from the stakeholders. The simulation results showed that the realistic target for sustainable CO 2 emission reduction in Indonesia by 2050 was the scenario from the combined stakeholders with 450 kgCO 2 eq/ton cement, corresponding to a 27% decrease in emissions from the 2020 baseline. This serves as input for interested parties to showcase the efforts of reducing CO 2 emissions, and provides recommendations for the achievements by (1) determining carbon taxes and revising cement product standards to further increase the clinker substitution rate; (2) developing an RDF (refused derived fuel) waste-processing plant independently to increase alternative fuel use; (3) ensuring the efficiency of electrical energy by increasing renewable energy sources; (4) integrating carbon capture and storage technology in cement plants.

Suggested Citation

  • Iman Junianto & Sunardi & Dadan Sumiarsa, 2023. "The Possibility of Achieving Zero CO 2 Emission in the Indonesian Cement Industry by 2050: A Stakeholder System Dynamic Perspective," Sustainability, MDPI, vol. 15(7), pages 1-16, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:6085-:d:1113159
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/7/6085/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/7/6085/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ansari, Nastaran & Seifi, Abbas, 2013. "A system dynamics model for analyzing energy consumption and CO2 emission in Iranian cement industry under various production and export scenarios," Energy Policy, Elsevier, vol. 58(C), pages 75-89.
    2. Rosa Agliata & Alfonso Marino & Luigi Mollo & Paolo Pariso, 2020. "Historic Building Energy Audit and Retrofit Simulation with Hemp-Lime Plaster—A Case Study," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    3. Thomas L. Saaty, 2013. "The Modern Science of Multicriteria Decision Making and Its Practical Applications: The AHP/ANP Approach," Operations Research, INFORMS, vol. 61(5), pages 1101-1118, October.
    4. Xu, Jin-Hua & Fleiter, Tobias & Fan, Ying & Eichhammer, Wolfgang, 2014. "CO2 emissions reduction potential in China’s cement industry compared to IEA’s Cement Technology Roadmap up to 2050," Applied Energy, Elsevier, vol. 130(C), pages 592-602.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chunlei Zhou & Donghai Xuan & Yuhan Miao & Xiaohu Luo & Wensi Liu & Yihong Zhang, 2023. "Accounting CO 2 Emissions of the Cement Industry: Based on an Electricity–Carbon Coupling Analysis," Energies, MDPI, vol. 16(11), pages 1-13, May.
    2. Yangbin Zhang & Yuhan Chen & Fengshan Jiang & Zhanting Deng & Zhiqiang Xie & Yuning Zhang & Ping Wen, 2023. "A Comprehensive Study of the Suitability of Urban Underground Spaces for Connection Development: A Case Study of the Erhai Lake Basin, China," Sustainability, MDPI, vol. 15(9), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junxiao Wei & Kuang Cen, 2019. "A preliminary calculation of cement carbon dioxide in China from 1949 to 2050," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1343-1362, December.
    2. Dehghan, Hamed & Amin-Naseri, Mohammad Reza & Nahavandi, Nasim, 2021. "A system dynamics model to analyze future electricity supply and demand in Iran under alternative pricing policies," Utilities Policy, Elsevier, vol. 69(C).
    3. Liu, Xuewei & Yuan, Zengwei & Xu, Yuan & Jiang, Songyan, 2017. "Greening cement in China: A cost-effective roadmap," Applied Energy, Elsevier, vol. 189(C), pages 233-244.
    4. Qin, Quande & Li, Xin & Li, Li & Zhen, Wei & Wei, Yi-Ming, 2017. "Air emissions perspective on energy efficiency: An empirical analysis of China’s coastal areas," Applied Energy, Elsevier, vol. 185(P1), pages 604-614.
    5. Jelena Lukić & Mirjana Misita & Dragan D. Milanović & Ankica Borota-Tišma & Aleksandra Janković, 2022. "Determining the Risk Level in Client Analysis by Applying Fuzzy Logic in Insurance Sector," Mathematics, MDPI, vol. 10(18), pages 1-17, September.
    6. Thanh Quang Nguyen & Sonia Longo & Maurizio Cellura & Le Quyen Luu & Alessandra Bertoli & Letizia Bua, 2024. "Evaluating and Prioritizing Circular Supply Chain Alternatives in the Energy Context with a Holistic Multi-Indicator Decision Support System," Energies, MDPI, vol. 17(20), pages 1-32, October.
    7. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
    8. Li, Wei & Gao, Shubin, 2018. "Prospective on energy related carbon emissions peak integrating optimized intelligent algorithm with dry process technique application for China's cement industry," Energy, Elsevier, vol. 165(PB), pages 33-54.
    9. Luo, Xu & Ge, Zhexue & Zhang, ShiGang & Yang, Yongmin, 2021. "A method for the maintainability evaluation at design stage using maintainability design attributes," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    10. Huang, Yun-Hsun & Chang, Yi-Lin & Fleiter, Tobias, 2016. "A critical analysis of energy efficiency improvement potentials in Taiwan's cement industry," Energy Policy, Elsevier, vol. 96(C), pages 14-26.
    11. Nayeah Kim & Yun Seop Hwang & Mun Ho Hwang, 2019. "New projection of GHG reduction potentials for Korea’s cement industry and comparison with Roadmap 2030," Energy & Environment, , vol. 30(3), pages 499-521, May.
    12. Akhil Kunche & Bożena Mielczarek, 2021. "Application of System Dynamic Modelling for Evaluation of Carbon Mitigation Strategies in Cement Industries: A Comparative Overview of the Current State of the Art," Energies, MDPI, vol. 14(5), pages 1-22, March.
    13. Parham Fami Tafreshi & Mohammad Hasan Aghdaie & Majid Behzadian & Mahdieh Ghani Abadi, 2016. "Developing a Group Decision Support System for Advertising Media Evaluation: A Case in the Middle East," Group Decision and Negotiation, Springer, vol. 25(5), pages 1021-1048, September.
    14. Aleksandar Aleksić & Danijela Tadić, 2023. "Industrial and Management Applications of Type-2 Multi-Attribute Decision-Making Techniques Extended with Type-2 Fuzzy Sets from 2013 to 2022," Mathematics, MDPI, vol. 11(10), pages 1-24, May.
    15. Gao, Tianming & Shen, Lei & Shen, Ming & Liu, Litao & Chen, Fengnan & Gao, Li, 2017. "Evolution and projection of CO2 emissions for China's cement industry from 1980 to 2020," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 522-537.
    16. Olga Porro & Francesc Pardo-Bosch & Núria Agell & Mónica Sánchez, 2020. "Understanding Location Decisions of Energy Multinational Enterprises within the European Smart Cities’ Context: An Integrated AHP and Extended Fuzzy Linguistic TOPSIS Method," Energies, MDPI, vol. 13(10), pages 1-29, May.
    17. Yuan-Wei Du & Yi-Pin Fan, 2023. "Spatiotemporal Dynamics of Agricultural Sustainability Assessment: A Study across 30 Chinese Provinces," Sustainability, MDPI, vol. 15(11), pages 1-23, June.
    18. Targetti, Stefano & Schaller, Lena L. & Kantelhardt, Jochen, 2021. "A fuzzy cognitive mapping approach for the assessment of public-goods governance in agricultural landscapes," Land Use Policy, Elsevier, vol. 107(C).
    19. Pengyun Chong & Hui Yin & Chaofeng Wang & Pengcheng Wang & Linqing Li & Di Wu & Jingwei Li & Dong Ding, 2022. "Evaluation of Social Stability Risk of Adjusting Goods Vehicle Calculation Method Based on Optimal Combination Weighting—Cloud Model," Sustainability, MDPI, vol. 14(24), pages 1-14, December.
    20. Akhil Kunche & Bożena Mielczarek, 2021. "Application of System Dynamic Modelling for Evaluation of CO 2 Emissions and Expenditure for Captive Power Generation Scenarios in the Cement Industry," Energies, MDPI, vol. 14(11), pages 1-22, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:6085-:d:1113159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.