IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i7p6021-d1112170.html
   My bibliography  Save this article

Solid Waste Landfill Site Assessment Framework Based on Single-Valued Neutrosophic Hybrid Aggregation and Multi-Criteria Analysis

Author

Listed:
  • Wendi Chen

    (School of Business, Ningbo University, Ningbo 315211, China)

  • Jiaxing Gu

    (School of Business, Ningbo University, Ningbo 315211, China)

  • Shouzhen Zeng

    (School of Business, Ningbo University, Ningbo 315211, China
    School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China)

  • Xiaoying Xie

    (College of Economics and Management, Zhejiang Normal University, Jinhua 321004, China)

Abstract

Landfills are an effective way to dispose of waste and appropriate landfill sites can lessen environmental damage during waste treatment. Solid waste landfill site (SWLS) selection has received much attention in the area of multi-criteria decision-making in recent years. However, the uncertainty and complexity of the SWLS selection make it a significant challenge for decision makers (DMs). Since single-valued neutrosophic (SVN) sets have the great advantage of handling complex problems with uncertain and inconsistent information, this paper aims at offering a site planning strategy under the SVN environment. For the SWLS selection problem with interrelated factors, the Schweizer–Sklar power Bonferroni mean operator is first created, which not only considers the possible correlations among attributes but also reduces the adverse effects of anomalous assessment information on decision results. Then, a multi-criteria analysis framework based on the aggregation operator is proposed and then applied to a real-world SWLS selection. DMs can flexibly adjust the parameters in this model to achieve a preferred SWLS that integrates economic, environmental, and social perspectives. The consistent results obtained from the comparative analysis highlight its benefits for selecting proper SWLSs.

Suggested Citation

  • Wendi Chen & Jiaxing Gu & Shouzhen Zeng & Xiaoying Xie, 2023. "Solid Waste Landfill Site Assessment Framework Based on Single-Valued Neutrosophic Hybrid Aggregation and Multi-Criteria Analysis," Sustainability, MDPI, vol. 15(7), pages 1-21, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:6021-:d:1112170
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/7/6021/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/7/6021/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seyed Mohsen Mousavi & Golnaz Darvishi & Naghmeh Mobarghaee Dinan & Seyed Amir Naghibi, 2022. "Optimal Landfill Site Selection for Solid Waste of Three Municipalities Based on Boolean and Fuzzy Methods: A Case Study in Kermanshah Province, Iran," Land, MDPI, vol. 11(10), pages 1-19, October.
    2. Juan-juan Peng & Jian-qiang Wang & Jing Wang & Hong-yu Zhang & Xiao-hong Chen, 2016. "Simplified neutrosophic sets and their applications in multi-criteria group decision-making problems," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(10), pages 2342-2358, July.
    3. Rezaei, Jafar, 2015. "Best-worst multi-criteria decision-making method," Omega, Elsevier, vol. 53(C), pages 49-57.
    4. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kik, M.C. & Claassen, G.D.H. & Meuwissen, M.P.M. & Smit, A.B. & Saatkamp, H.W., 2021. "Actor analysis for sustainable soil management – A case study from the Netherlands," Land Use Policy, Elsevier, vol. 107(C).
    2. Zheng Yuan & Baohua Wen & Cheng He & Jin Zhou & Zhonghua Zhou & Feng Xu, 2022. "Application of Multi-Criteria Decision-Making Analysis to Rural Spatial Sustainability Evaluation: A Systematic Review," IJERPH, MDPI, vol. 19(11), pages 1-31, May.
    3. Amelia Bilbao-Terol & Mar Arenas-Parra & Raquel Quiroga-García & Celia Bilbao-Terol, 2022. "An extended best–worst multiple reference point method: application in the assessment of non-life insurance companies," Operational Research, Springer, vol. 22(5), pages 5323-5362, November.
    4. Madjid Tavana & Mehdi Soltanifar & Francisco J. Santos-Arteaga, 2023. "Analytical hierarchy process: revolution and evolution," Annals of Operations Research, Springer, vol. 326(2), pages 879-907, July.
    5. K. Koppiahraj & S. Bathrinath & V. G. Venkatesh & Venkatesh Mani & Yangyan Shi, 2023. "Optimal sustainability assessment method selection: a practitioner perspective," Annals of Operations Research, Springer, vol. 324(1), pages 629-662, May.
    6. Omid Valizadeh & Mojtaba Ghiyasi, 2023. "Assessing telecommunication contractor firms using a hybrid DEA-BWM method," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 33(4), pages 189-200.
    7. Babak Daneshvar Rouyendegh & Kazim Topuz & Ali Dag & Asil Oztekin, 2019. "An AHP-IFT Integrated Model for Performance Evaluation of E-Commerce Web Sites," Information Systems Frontiers, Springer, vol. 21(6), pages 1345-1355, December.
    8. Ferenc Bognár & Balázs Szentes & Petra Benedek, 2022. "Development of the PRISM Risk Assessment Method Based on a Multiple AHP-TOPSIS Approach," Risks, MDPI, vol. 10(11), pages 1-16, November.
    9. Szádoczki, Zsombor & Bozóki, Sándor & Tekile, Hailemariam Abebe, 2022. "Filling in pattern designs for incomplete pairwise comparison matrices: (Quasi-)regular graphs with minimal diameter," Omega, Elsevier, vol. 107(C).
    10. Dragiša Stanujkić & Darjan Karabašević & Gabrijela Popović & Predrag S. Stanimirović & Muzafer Saračević & Florentin Smarandache & Vasilios N. Katsikis & Alptekin Ulutaş, 2021. "A New Grey Approach for Using SWARA and PIPRECIA Methods in a Group Decision-Making Environment," Mathematics, MDPI, vol. 9(13), pages 1-16, July.
    11. Cinelli, Marco & Kadziński, Miłosz & Miebs, Grzegorz & Gonzalez, Michael & Słowiński, Roman, 2022. "Recommending multiple criteria decision analysis methods with a new taxonomy-based decision support system," European Journal of Operational Research, Elsevier, vol. 302(2), pages 633-651.
    12. Kumar, Aalok & Anbanandam, Ramesh, 2022. "Assessment of environmental and social sustainability performance of the freight transportation industry: An index-based approach," Transport Policy, Elsevier, vol. 124(C), pages 43-60.
    13. Ocampo, Lanndon & Aro, Joerabell Lourdes & Evangelista, Samantha Shane & Maturan, Fatima & Atibing, Nadine May & Yamagishi, Kafferine & Selerio, Egberto, 2023. "Synthesis of strategies in post-COVID-19 public sector supply chains under an intuitionistic fuzzy environment," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    14. Misbah Anjum & Vernika Agarwal & P. K. Kapur & Sunil Kumar Khatri, 2020. "Two-phase methodology for prioritization and utility assessment of software vulnerabilities," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 289-300, July.
    15. Zhang, Long & Bai, Wuliyasu, 2021. "Sustainability of crop–based biodiesel for transportation in China: Barrier analysis and life cycle ecological footprint calculations," Technological Forecasting and Social Change, Elsevier, vol. 164(C).
    16. Ren, Jingzheng & Liang, Hanwei & Chan, Felix T.S., 2017. "Urban sewage sludge, sustainability, and transition for Eco-City: Multi-criteria sustainability assessment of technologies based on best-worst method," Technological Forecasting and Social Change, Elsevier, vol. 116(C), pages 29-39.
    17. Deveci, Muhammet & Pamucar, Dragan & Gokasar, Ilgin & Delen, Dursun & Wu, Qun & Simic, Vladimir, 2022. "An analytics approach to decision alternative prioritization for zero-emission zone logistics," Journal of Business Research, Elsevier, vol. 146(C), pages 554-570.
    18. Wu, Zhibin & Xu, Jiuping, 2016. "Managing consistency and consensus in group decision making with hesitant fuzzy linguistic preference relations," Omega, Elsevier, vol. 65(C), pages 28-40.
    19. Dragisa STANUJKIC & Darjan KARABASEVIC & Gabrijela POPOVIC & Cipriana SAVA, 2021. "Simplified Pivot Pairwise Relative Criteria Importance Assessment (Piprecia-S) Method," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 141-154, December.
    20. Gawlik, Remigiusz, 2016. "Encompassing the Work-Life Balance into Early Career Decision-Making of Future Employees Through the Analytic Hierarchy Process," MPRA Paper 80260, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:6021-:d:1112170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.