IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i7p5968-d1111257.html
   My bibliography  Save this article

Impact of Digital Economy on the Upgrading of Energy Consumption Structure: Evidence from Mainland China

Author

Listed:
  • Yating Zeng

    (School of Economics and Management, Beijing University of Chemical Technology, Beijing 100029, China)

  • Xinyue Xu

    (School of Economics and Management, Beijing University of Chemical Technology, Beijing 100029, China)

  • Yuyao Zhao

    (School of Economics and Management, Beijing University of Chemical Technology, Beijing 100029, China)

  • Bin Li

    (School of Economics and Management, Beijing University of Chemical Technology, Beijing 100029, China)

Abstract

The digital economy is fundamentally altering human productivity and lifestyles, gradually becoming a new engine that drives energy technology transformation and optimizes the energy consumption structure. This paper examines the impact of the digital economy on upgrading the energy consumption structure using panel data from 30 Chinese provinces from 2013 to 2019. The empirical findings indicate that the digital economy’s development can help to improve energy consumption structure, and this impact can have a threshold effect. Heterogeneity analysis reveals that upgrading the energy consumption structure affected by the digital economy is more significant in lower digital divide regions, the eastern and central regions, and provinces with high economic development levels. Moreover, the findings of a mechanism analysis demonstrate that the digital economy primarily influences green technology innovation, and government environmental regulation affects the major upgrades of the energy consumption structure.

Suggested Citation

  • Yating Zeng & Xinyue Xu & Yuyao Zhao & Bin Li, 2023. "Impact of Digital Economy on the Upgrading of Energy Consumption Structure: Evidence from Mainland China," Sustainability, MDPI, vol. 15(7), pages 1-18, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5968-:d:1111257
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/7/5968/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/7/5968/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shahbaz, Muhammad & Song, Malin & Ahmad, Shabbir & Vo, Xuan Vinh, 2022. "Does economic growth stimulate energy consumption? The role of human capital and R&D expenditures in China," Energy Economics, Elsevier, vol. 105(C).
    2. Shuming Ren & Lianqing Li & Yueqi Han & Yu Hao & Haitao Wu, 2022. "The emerging driving force of inclusive green growth: Does digital economy agglomeration work?," Business Strategy and the Environment, Wiley Blackwell, vol. 31(4), pages 1656-1678, May.
    3. Olena Ivus & Matthew Boland, 2015. "The employment and wage impact of broadband deployment in Canada," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 48(5), pages 1803-1830, December.
    4. Hansen, Bruce E., 1999. "Threshold effects in non-dynamic panels: Estimation, testing, and inference," Journal of Econometrics, Elsevier, vol. 93(2), pages 345-368, December.
    5. Gao, Da & Li, Ge & Yu, Jiyu, 2022. "Does digitization improve green total factor energy efficiency? Evidence from Chinese 213 cities," Energy, Elsevier, vol. 247(C).
    6. Morgenstern, Richard D. & Pizer, William A. & Shih, Jhih-Shyang, 2002. "Jobs Versus the Environment: An Industry-Level Perspective," Journal of Environmental Economics and Management, Elsevier, vol. 43(3), pages 412-436, May.
    7. Gruber, Harald, 2019. "Proposals for a digital industrial policy for Europe," Telecommunications Policy, Elsevier, vol. 43(2), pages 116-127.
    8. Wu, Haitao & Hao, Yu & Weng, Jia-Hsi, 2019. "How does energy consumption affect China's urbanization? New evidence from dynamic threshold panel models," Energy Policy, Elsevier, vol. 127(C), pages 24-38.
    9. Wang, Jianda & Jiang, Qingzhe & Dong, Xiucheng & Dong, Kangyin, 2021. "Decoupling and decomposition analysis of investments and CO2 emissions in information and communication technology sector," Applied Energy, Elsevier, vol. 302(C).
    10. Xiaoxia Chen & Mélanie Despeisse & Björn Johansson, 2020. "Environmental Sustainability of Digitalization in Manufacturing: A Review," Sustainability, MDPI, vol. 12(24), pages 1-31, December.
    11. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    12. Xue, Yan & Tang, Chang & Wu, Haitao & Liu, Jianmin & Hao, Yu, 2022. "The emerging driving force of energy consumption in China: Does digital economy development matter?," Energy Policy, Elsevier, vol. 165(C).
    13. Bastida, Leire & Cohen, Jed J. & Kollmann, Andrea & Moya, Ana & Reichl, Johannes, 2019. "Exploring the role of ICT on household behavioural energy efficiency to mitigate global warming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 455-462.
    14. Ndubuisi, Gideon & Otioma, Chuks & Tetteh, Godsway Korku, 2021. "Digital infrastructure and employment in services: Evidence from Sub-Saharan African countries," Telecommunications Policy, Elsevier, vol. 45(8).
    15. Wu, Haitao & Xue, Yan & Hao, Yu & Ren, Siyu, 2021. "How does internet development affect energy-saving and emission reduction? Evidence from China," Energy Economics, Elsevier, vol. 103(C).
    16. Tran, Bao-Linh & Chen, Chi-Chung & Tseng, Wei-Chun, 2022. "Causality between energy consumption and economic growth in the presence of GDP threshold effect: Evidence from OECD countries," Energy, Elsevier, vol. 251(C).
    17. Wu, Haitao & Hao, Yu & Ren, Siyu & Yang, Xiaodong & Xie, Guo, 2021. "Does internet development improve green total factor energy efficiency? Evidence from China," Energy Policy, Elsevier, vol. 153(C).
    18. Hao, Yu & Li, Ying & Guo, Yunxia & Chai, Jingxia & Yang, Chuxiao & Wu, Haitao, 2022. "Digitalization and electricity consumption: Does internet development contribute to the reduction in electricity intensity in China?," Energy Policy, Elsevier, vol. 164(C).
    19. Lin, Boqiang & Xu, Mengmeng, 2018. "Regional differences on CO2 emission efficiency in metallurgical industry of China," Energy Policy, Elsevier, vol. 120(C), pages 302-311.
    20. Moyer, Jonathan D. & Hughes, Barry B., 2012. "ICTs: Do they contribute to increased carbon emissions?," Technological Forecasting and Social Change, Elsevier, vol. 79(5), pages 919-931.
    21. Zhou, P. & Zhang, H. & Zhang, L.P., 2022. "The drivers of energy intensity changes in Chinese cities: A production-theoretical decomposition analysis," Applied Energy, Elsevier, vol. 307(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Toto Gunarto & Ukhti Ciptawaty & Dedy Yuliawan & Ahmad Mahyudin & Ahmad Dhea Pratama & Heru Wahyudi, 2024. "Comparison of Energy Consumption to Economic Growth in Developing Asian and Developed Asian Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 14(1), pages 264-271, January.
    2. Sun, Chuanwang & Khan, Anwar & Xue, Juntao & Huang, Xiaoyong, 2024. "Are digital economy and financial structure driving renewable energy technology innovations: A major eight countries perspective," Applied Energy, Elsevier, vol. 362(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue, Yan & Tang, Chang & Wu, Haitao & Liu, Jianmin & Hao, Yu, 2022. "The emerging driving force of energy consumption in China: Does digital economy development matter?," Energy Policy, Elsevier, vol. 165(C).
    2. Yin, Zi Hui & Zeng, Wei Ping, 2023. "The effects of industrial intelligence on China's energy intensity: The role of technology absorptive capacity," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    3. Charfeddine, Lanouar & Umlai, Mohamed, 2023. "ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    4. Zhang, Wei & Liu, Xuemeng & Wang, Die & Zhou, Jianping, 2022. "Digital economy and carbon emission performance: Evidence at China's city level," Energy Policy, Elsevier, vol. 165(C).
    5. Lin, Boqiang & Huang, Chenchen, 2023. "How will promoting the digital economy affect electricity intensity?," Energy Policy, Elsevier, vol. 173(C).
    6. Wang, Lianghu & Shao, Jun, 2023. "Digital economy, entrepreneurship and energy efficiency," Energy, Elsevier, vol. 269(C).
    7. Zhang, Sheng-Hao & Yang, Jun & Feng, Chao, 2023. "Can internet development alleviate energy poverty? Evidence from China," Energy Policy, Elsevier, vol. 173(C).
    8. Sun, Chuanwang & Xu, Mengjie & Wang, Bo, 2024. "Deep learning: Spatiotemporal impact of digital economy on energy productivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    9. Junhong Qu & Xiaoli Hao, 2022. "Digital Economy, Financial Development, and Energy Poverty Based on Mediating Effects and a Spatial Autocorrelation Model," Sustainability, MDPI, vol. 14(15), pages 1-24, July.
    10. Zhuoxi Yu & Shan Liu & Zhichuan Zhu, 2022. "Has the Digital Economy Reduced Carbon Emissions?: Analysis Based on Panel Data of 278 Cities in China," IJERPH, MDPI, vol. 19(18), pages 1-18, September.
    11. Fang, Guochang & Chen, Gang & Yang, Kun & Yin, Weijun & Tian, Lixin, 2024. "How does green fiscal expenditure promote green total factor energy efficiency? — Evidence from Chinese 254 cities," Applied Energy, Elsevier, vol. 353(PA).
    12. Xu, Qiong & Zhong, Meirui & Li, Xin, 2022. "How does digitalization affect energy? International evidence," Energy Economics, Elsevier, vol. 107(C).
    13. Wang, Jianda & Dong, Kangyin & Dong, Xiucheng & Taghizadeh-Hesary, Farhad, 2022. "Assessing the digital economy and its carbon-mitigation effects: The case of China," Energy Economics, Elsevier, vol. 113(C).
    14. Yang, Senmiao & Wang, Jianda & Dong, Kangyin & Jiang, Qingzhe, 2023. "A path towards China's energy justice: How does digital technology innovation bring about a just revolution?," Energy Economics, Elsevier, vol. 127(PA).
    15. Jiachao Peng & Hanfei Chen & Lei Jia & Shuke Fu & Jiali Tian, 2023. "Impact of Digital Industrialization on the Energy Industry Supply Chain: Evidence from the Natural Gas Industry in China," Energies, MDPI, vol. 16(4), pages 1-32, February.
    16. Chai, Jingxia & Wu, Haitao & Hao, Yu, 2022. "Planned economic growth and controlled energy demand: How do regional growth targets affect energy consumption in China?," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    17. Yang, Jun & Yang, Dingjian & Cheng, Jixin, 2024. "The non-rivalry of data, directed technical change and the environment: A theoretical study incorporating data as a production factor," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 417-448.
    18. Wang, Jianda & Dong, Kangyin & Sha, Yezhou & Yan, Cheng, 2022. "Envisaging the carbon emissions efficiency of digitalization: The case of the internet economy for China," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    19. Wang, Ke-Liang & Sun, Ting-Ting & Xu, Ru-Yu & Miao, Zhuang & Cheng, Yun-He, 2022. "How does internet development promote urban green innovation efficiency? Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    20. Zhuoxi Yu & Shan Liu & Zhichuan Zhu & Lianyan Fu, 2023. "Spatial Imbalance, Dynamic Evolution and Convergence of the Digital Economy: Analysis Based on Panel Data of 278 Cities in China," Sustainability, MDPI, vol. 15(9), pages 1-26, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5968-:d:1111257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.