IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i7p5874-d1109610.html
   My bibliography  Save this article

Current Status and Development Trend of Soil Salinity Monitoring Research in China

Author

Listed:
  • Yingxuan Ma

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China
    MNR Technology Innovation Center for Central Asia Geo-Information Exploitation and Utilization, Urumqi 830046, China)

  • Nigara Tashpolat

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China
    MNR Technology Innovation Center for Central Asia Geo-Information Exploitation and Utilization, Urumqi 830046, China)

Abstract

Soil salinization is a resource and ecological problem that currently exists on a large scale in all countries of the world. This problem is seriously restricting the development of agricultural production, the sustainable use of land resources, and the stability of the ecological environment. Salinized soils in China are characterized by extensive land area, complex saline species, and prominent salinization problems. Therefore, strengthening the management and utilization of salinized soils, monitoring and identifying accurate salinization information, and mastering the degree of regional salinization are important goals that researchers have been trying to explore and overcome. Based on a large amount of soil salinization research, this paper reviews the developmental history of saline soil management research in China, discusses the research progress of soil salinization monitoring, and summarizes the main modeling methods for remote sensing monitoring of saline soils. Additionally, this paper also proposes and analyzes the limitations of China’s soil salinity monitoring research and its future development trend, taking into account the real needs and frontier hotspots of the country in related research. This is of great practical significance to comprehensively grasp the current situation of salinization research, further clarify and sort out research ideas of salinization monitoring, enrich the remote sensing monitoring methods of saline soils, and solve practical problems of soil salinization in China.

Suggested Citation

  • Yingxuan Ma & Nigara Tashpolat, 2023. "Current Status and Development Trend of Soil Salinity Monitoring Research in China," Sustainability, MDPI, vol. 15(7), pages 1-25, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5874-:d:1109610
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/7/5874/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/7/5874/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khan, Nasir M. & Rastoskuev, Victor V. & Sato, Y. & Shiozawa, S., 2005. "Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 96-109, August.
    2. Guanfang Sun & Yan Zhu & Zhaoliang Gao & Jinzhong Yang & Zhongyi Qu & Wei Mao & Jingwei Wu, 2022. "Spatiotemporal Patterns and Key Driving Factors of Soil Salinity in Dry and Wet Years in an Arid Agricultural Area with Shallow Groundwater Table," Agriculture, MDPI, vol. 12(8), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Ganga & Mario Elia & Blaž Repe, 2023. "Applications of GIS and Remote Sensing in Soil Environment Monitoring," Sustainability, MDPI, vol. 15(18), pages 1-2, September.
    2. Junnan Ding & Bin Li & Minglong Sun & Xin Li, 2023. "Different Cropping Patterns to Restore Saline-Alkali Soils in Northeast China Affect the Abundance of Functional Genes in the Soil Nitrogen Cycle," Sustainability, MDPI, vol. 15(8), pages 1-20, April.
    3. Shuoyang Li & Guiyu Yang & Cui Chang & Hao Wang & Hongling Zhang & Na Zhang & Zhigong Peng & Yaomingqi Song, 2024. "Remote Sensing Inversion of Salinization Degree Distribution and Analysis of Its Influencing Factors in an Arid Irrigated District," Land, MDPI, vol. 13(4), pages 1-18, March.
    4. Krzysztof Tomczyk, 2023. "Extended Calibration of Charge Mode Accelerometers to Improve the Accuracy of Energy Systems," Energies, MDPI, vol. 16(22), pages 1-14, November.
    5. Changcong An & Fenglan Han & Ning Li & Jintao Zheng & Maohui Li & Yanan Liu & Haipeng Liu, 2024. "Improving Physical and Chemical Properties of Saline Soils with Fly Ash Saline and Alkaline Amendment Materials," Sustainability, MDPI, vol. 16(8), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong Su & Xinjun Wang & Songrui Ning & Jiandong Sheng & Pingan Jiang & Shenghan Gao & Qiulan Yang & Zhixin Zhou & Hanyu Cui & Zhilin Li, 2024. "Enhancing Soil Salinity Evaluation Accuracy in Arid Regions: An Integrated Spatiotemporal Data Fusion and AI Model Approach for Arable Lands," Land, MDPI, vol. 13(11), pages 1-20, November.
    2. Marko Reljić & Marija Romić & Davor Romić & Gordon Gilja & Vedran Mornar & Gabrijel Ondrasek & Marina Bubalo Kovačić & Monika Zovko, 2023. "Advanced Continuous Monitoring System—Tools for Water Resource Management and Decision Support System in Salt Affected Delta," Agriculture, MDPI, vol. 13(2), pages 1-19, February.
    3. Romeu Gerardo & Isabel P. de Lima, 2022. "Sentinel-2 Satellite Imagery-Based Assessment of Soil Salinity in Irrigated Rice Fields in Portugal," Agriculture, MDPI, vol. 12(9), pages 1-20, September.
    4. Maxime Dumont & Guilhem Brunel & Paul Tresson & Jérôme Nespoulous & Hassan Boukcim & Marc Ducousso & Stéphane Boivin & Olivier Taugourdeau & Bruno Tisseyre, 2024. "Operational sampling designs for poorly accessible areas based on a multi-objective optimization method," Post-Print hal-04566087, HAL.
    5. Yaqi Wang & Ming Gao & Heting Chen & Yiwen Chen & Lei Wang & Rui Wang, 2023. "Fertigation and Carboxymethyl Cellulose Applications Enhance Water-Use Efficiency, Improving Soil Available Nutrients and Maize Yield in Salt-Affected Soil," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    6. Weitao Lv & Xiasong Hu & Xilai Li & Jimei Zhao & Changyi Liu & Shuaifei Li & Guorong Li & Haili Zhu, 2024. "Multi-Model Comprehensive Inversion of Surface Soil Moisture from Landsat Images Based on Machine Learning Algorithms," Sustainability, MDPI, vol. 16(9), pages 1-21, April.
    7. Min Ma & Yi Hao & Qingchun Huang & Yongxin Liu & Liancun Xiu & Qi Gao, 2024. "Soil Salinity Estimation by 3D Spectral Space Optimization and Deep Soil Investigation in the Songnen Plain, Northeast China," Sustainability, MDPI, vol. 16(5), pages 1-26, March.
    8. Mohamed Elhedi Gharsallah & Hamouda Aichi & Talel Stambouli & Zouhair Ben Rabah & Habib Ben Hassine, 2022. "Assessment and mapping of soil salinity using electromagnetic induction and Landsat 8 OLI remote sensing data in an irrigated olive orchard under semi-arid conditions," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 17(1), pages 15-28.
    9. Zixuan Zhang & Beibei Niu & Xinju Li & Xingjian Kang & Zhenqi Hu, 2022. "Estimation and Dynamic Analysis of Soil Salinity Based on UAV and Sentinel-2A Multispectral Imagery in the Coastal Area, China," Land, MDPI, vol. 11(12), pages 1-21, December.
    10. Jiawen Hou & Mao Ye, 2022. "Effects of Dynamic Changes of Soil Moisture and Salinity on Plant Community in the Bosten Lake Basin," Sustainability, MDPI, vol. 14(21), pages 1-13, October.
    11. Hesham M. Aboelsoud & Mohamed A. E. AbdelRahman & Ahmed M. S. Kheir & Mona S. M. Eid & Khalil A. Ammar & Tamer H. Khalifa & Antonio Scopa, 2022. "Quantitative Estimation of Saline-Soil Amelioration Using Remote-Sensing Indices in Arid Land for Better Management," Land, MDPI, vol. 11(7), pages 1-19, July.
    12. Ramos, Tiago B. & Castanheira, Nádia & Oliveira, Ana R. & Paz, Ana Marta & Darouich, Hanaa & Simionesei, Lucian & Farzamian, Mohammad & Gonçalves, Maria C., 2020. "Soil salinity assessment using vegetation indices derived from Sentinel-2 multispectral data. application to Lezíria Grande, Portugal," Agricultural Water Management, Elsevier, vol. 241(C).
    13. Hamideh Nouri & Sattar Chavoshi Borujeni & Sina Alaghmand & Sharolyn J. Anderson & Paul C. Sutton & Somayeh Parvazian & Simon Beecham, 2018. "Soil Salinity Mapping of Urban Greenery Using Remote Sensing and Proximal Sensing Techniques; The Case of Veale Gardens within the Adelaide Parklands," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    14. Billal Hossen & Helmut Yabar & Md Jamal Faruque, 2022. "Exploring the Potential of Soil Salinity Assessment through Remote Sensing and GIS: Case Study in the Coastal Rural Areas of Bangladesh," Land, MDPI, vol. 11(10), pages 1-18, October.
    15. Shuai Li & Pu Guo & Fei Sun & Jinlei Zhu & Xiaoming Cao & Xue Dong & Qi Lu, 2024. "Mapping Dryland Ecosystems Using Google Earth Engine and Random Forest: A Case Study of an Ecologically Critical Area in Northern China," Land, MDPI, vol. 13(6), pages 1-20, June.
    16. Sheshu Zhang & Jun Zhao & Jianxia Yang & Jinfeng Xie & Ziyun Sun, 2024. "Feature Selection and Regression Models for Multisource Data-Based Soil Salinity Prediction: A Case Study of Minqin Oasis in Arid China," Land, MDPI, vol. 13(6), pages 1-21, June.
    17. Yasin ul Haq & Muhammad Shahbaz & H. M. Shahzad Asif & Ali Al-Laith & Wesam H. Alsabban, 2023. "Spatial Mapping of Soil Salinity Using Machine Learning and Remote Sensing in Kot Addu, Pakistan," Sustainability, MDPI, vol. 15(17), pages 1-19, August.
    18. repec:caa:jnlswr:v:preprint:id:5-2024-swr is not listed on IDEAS
    19. Hui Deng & Wenjiang Zhang & Xiaoqian Zheng & Houxi Zhang, 2024. "Crop Classification Combining Object-Oriented Method and Random Forest Model Using Unmanned Aerial Vehicle (UAV) Multispectral Image," Agriculture, MDPI, vol. 14(4), pages 1-17, March.
    20. Shuoyang Li & Guiyu Yang & Cui Chang & Hao Wang & Hongling Zhang & Na Zhang & Zhigong Peng & Yaomingqi Song, 2024. "Remote Sensing Inversion of Salinization Degree Distribution and Analysis of Its Influencing Factors in an Arid Irrigated District," Land, MDPI, vol. 13(4), pages 1-18, March.
    21. Achivir Stella Yawe & Changlai Xiao & Oluwafemi Adewole Adeyeye & Mingjun Liu & Xiaoya Feng & Xiujuan Liang, 2022. "Spatio-Temporal Evolution of the Ecological Environment in a Typical Semi-Arid Region of Northeast China," Sustainability, MDPI, vol. 15(1), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5874-:d:1109610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.