IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i6p845-d1414402.html
   My bibliography  Save this article

Mapping Dryland Ecosystems Using Google Earth Engine and Random Forest: A Case Study of an Ecologically Critical Area in Northern China

Author

Listed:
  • Shuai Li

    (Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China
    Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China
    Inner Mongolia Dengkou Desert Ecosystem National Observation Research Station, Experimental Center of Desert Forestry, Chinese Academy of Forestry, Bayannur 015200, China)

  • Pu Guo

    (Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China
    Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China)

  • Fei Sun

    (Inner Mongolia Dengkou Desert Ecosystem National Observation Research Station, Experimental Center of Desert Forestry, Chinese Academy of Forestry, Bayannur 015200, China)

  • Jinlei Zhu

    (Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China
    Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China)

  • Xiaoming Cao

    (Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China
    Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China)

  • Xue Dong

    (Inner Mongolia Dengkou Desert Ecosystem National Observation Research Station, Experimental Center of Desert Forestry, Chinese Academy of Forestry, Bayannur 015200, China)

  • Qi Lu

    (Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China
    Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China)

Abstract

Drylands are characterized by unique ecosystem types, sparse vegetation, fragile environments, and vital ecosystem services. The accurate mapping of dryland ecosystems is essential for their protection and restoration, but previous approaches primarily relied on modifying land use data derived from remote sensing, lacking the direct utilization of latest remote sensing technologies and methods to map ecosystems, especially failing to effectively identify key ecosystems with sparse vegetation. This study attempts to integrate Google Earth Engine (GEE), random forest (RF) algorithm, multi-source remote sensing data (spectral, radar, terrain, texture), feature optimization, and image segmentation to develop a fine-scale mapping method for an ecologically critical area in northern China. The results showed the following: (1) Incorporating multi-source remote sensing data significantly improved the overall classification accuracy of dryland ecosystems, with radar features contributing the most, followed by terrain and texture features. (2) Optimizing the features set can enhance the classification accuracy, with overall accuracy reaching 91.34% and kappa coefficient 0.90. (3) User’s accuracies exceeded 90% for forest, cropland, and water, and were slightly lower for steppe and shrub-steppe but were still above 85%, demonstrating the efficacy of the GEE and RF algorithm to map sparse vegetation and other dryland ecosystems. Accurate dryland ecosystems mapping requires accounting for regional heterogeneity and optimizing sample data and feature selection based on field surveys to precisely depict ecosystem patterns in complex regions. This study precisely mapped dryland ecosystems in a typical dryland region, and provides baseline data for ecological protection and restoration policies in this region, as well as a methodological reference for ecosystem mapping in similar regions.

Suggested Citation

  • Shuai Li & Pu Guo & Fei Sun & Jinlei Zhu & Xiaoming Cao & Xue Dong & Qi Lu, 2024. "Mapping Dryland Ecosystems Using Google Earth Engine and Random Forest: A Case Study of an Ecologically Critical Area in Northern China," Land, MDPI, vol. 13(6), pages 1-20, June.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:6:p:845-:d:1414402
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/6/845/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/6/845/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shuai Li & Shufang Tian, 2023. "A Deep Feature Fusion Method for Complex Ground Object Classification in the Land Cover Ecosystem Using ZY1-02D and Sentinel-1A," Land, MDPI, vol. 12(5), pages 1-20, May.
    2. Khan, Nasir M. & Rastoskuev, Victor V. & Sato, Y. & Shiozawa, S., 2005. "Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 96-109, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Romeu Gerardo & Isabel P. de Lima, 2022. "Sentinel-2 Satellite Imagery-Based Assessment of Soil Salinity in Irrigated Rice Fields in Portugal," Agriculture, MDPI, vol. 12(9), pages 1-20, September.
    2. Maxime Dumont & Guilhem Brunel & Paul Tresson & Jérôme Nespoulous & Hassan Boukcim & Marc Ducousso & Stéphane Boivin & Olivier Taugourdeau & Bruno Tisseyre, 2024. "Operational sampling designs for poorly accessible areas based on a multi-objective optimization method," Post-Print hal-04566087, HAL.
    3. Weitao Lv & Xiasong Hu & Xilai Li & Jimei Zhao & Changyi Liu & Shuaifei Li & Guorong Li & Haili Zhu, 2024. "Multi-Model Comprehensive Inversion of Surface Soil Moisture from Landsat Images Based on Machine Learning Algorithms," Sustainability, MDPI, vol. 16(9), pages 1-21, April.
    4. Min Ma & Yi Hao & Qingchun Huang & Yongxin Liu & Liancun Xiu & Qi Gao, 2024. "Soil Salinity Estimation by 3D Spectral Space Optimization and Deep Soil Investigation in the Songnen Plain, Northeast China," Sustainability, MDPI, vol. 16(5), pages 1-26, March.
    5. Mohamed Elhedi Gharsallah & Hamouda Aichi & Talel Stambouli & Zouhair Ben Rabah & Habib Ben Hassine, 2022. "Assessment and mapping of soil salinity using electromagnetic induction and Landsat 8 OLI remote sensing data in an irrigated olive orchard under semi-arid conditions," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 17(1), pages 15-28.
    6. Zixuan Zhang & Beibei Niu & Xinju Li & Xingjian Kang & Zhenqi Hu, 2022. "Estimation and Dynamic Analysis of Soil Salinity Based on UAV and Sentinel-2A Multispectral Imagery in the Coastal Area, China," Land, MDPI, vol. 11(12), pages 1-21, December.
    7. Jiawen Hou & Mao Ye, 2022. "Effects of Dynamic Changes of Soil Moisture and Salinity on Plant Community in the Bosten Lake Basin," Sustainability, MDPI, vol. 14(21), pages 1-13, October.
    8. Hesham M. Aboelsoud & Mohamed A. E. AbdelRahman & Ahmed M. S. Kheir & Mona S. M. Eid & Khalil A. Ammar & Tamer H. Khalifa & Antonio Scopa, 2022. "Quantitative Estimation of Saline-Soil Amelioration Using Remote-Sensing Indices in Arid Land for Better Management," Land, MDPI, vol. 11(7), pages 1-19, July.
    9. Ramos, Tiago B. & Castanheira, Nádia & Oliveira, Ana R. & Paz, Ana Marta & Darouich, Hanaa & Simionesei, Lucian & Farzamian, Mohammad & Gonçalves, Maria C., 2020. "Soil salinity assessment using vegetation indices derived from Sentinel-2 multispectral data. application to Lezíria Grande, Portugal," Agricultural Water Management, Elsevier, vol. 241(C).
    10. Hamideh Nouri & Sattar Chavoshi Borujeni & Sina Alaghmand & Sharolyn J. Anderson & Paul C. Sutton & Somayeh Parvazian & Simon Beecham, 2018. "Soil Salinity Mapping of Urban Greenery Using Remote Sensing and Proximal Sensing Techniques; The Case of Veale Gardens within the Adelaide Parklands," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    11. Billal Hossen & Helmut Yabar & Md Jamal Faruque, 2022. "Exploring the Potential of Soil Salinity Assessment through Remote Sensing and GIS: Case Study in the Coastal Rural Areas of Bangladesh," Land, MDPI, vol. 11(10), pages 1-18, October.
    12. Sheshu Zhang & Jun Zhao & Jianxia Yang & Jinfeng Xie & Ziyun Sun, 2024. "Feature Selection and Regression Models for Multisource Data-Based Soil Salinity Prediction: A Case Study of Minqin Oasis in Arid China," Land, MDPI, vol. 13(6), pages 1-21, June.
    13. Yasin ul Haq & Muhammad Shahbaz & H. M. Shahzad Asif & Ali Al-Laith & Wesam H. Alsabban, 2023. "Spatial Mapping of Soil Salinity Using Machine Learning and Remote Sensing in Kot Addu, Pakistan," Sustainability, MDPI, vol. 15(17), pages 1-19, August.
    14. repec:caa:jnlswr:v:preprint:id:5-2024-swr is not listed on IDEAS
    15. Hui Deng & Wenjiang Zhang & Xiaoqian Zheng & Houxi Zhang, 2024. "Crop Classification Combining Object-Oriented Method and Random Forest Model Using Unmanned Aerial Vehicle (UAV) Multispectral Image," Agriculture, MDPI, vol. 14(4), pages 1-17, March.
    16. Shuoyang Li & Guiyu Yang & Cui Chang & Hao Wang & Hongling Zhang & Na Zhang & Zhigong Peng & Yaomingqi Song, 2024. "Remote Sensing Inversion of Salinization Degree Distribution and Analysis of Its Influencing Factors in an Arid Irrigated District," Land, MDPI, vol. 13(4), pages 1-18, March.
    17. Achivir Stella Yawe & Changlai Xiao & Oluwafemi Adewole Adeyeye & Mingjun Liu & Xiaoya Feng & Xiujuan Liang, 2022. "Spatio-Temporal Evolution of the Ecological Environment in a Typical Semi-Arid Region of Northeast China," Sustainability, MDPI, vol. 15(1), pages 1-19, December.
    18. Azamat Suleymanov & Ilyusya Gabbasova & Mikhail Komissarov & Ruslan Suleymanov & Timur Garipov & Iren Tuktarova & Larisa Belan, 2023. "Random Forest Modeling of Soil Properties in Saline Semi-Arid Areas," Agriculture, MDPI, vol. 13(5), pages 1-11, April.
    19. Tharani Gopalakrishnan & Lalit Kumar, 2020. "Modeling and Mapping of Soil Salinity and its Impact on Paddy Lands in Jaffna Peninsula, Sri Lanka," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    20. Yingxuan Ma & Nigara Tashpolat, 2023. "Current Status and Development Trend of Soil Salinity Monitoring Research in China," Sustainability, MDPI, vol. 15(7), pages 1-25, March.
    21. Iqra Farooq & Shabir Ahmed Bangroo & Owais Bashir & Tajamul Islam Shah & Ajaz A. Malik & Asif M. Iqbal & Syed Sheraz Mahdi & Owais Ali Wani & Nageena Nazir & Asim Biswas, 2022. "Comparison of Random Forest and Kriging Models for Soil Organic Carbon Mapping in the Himalayan Region of Kashmir," Land, MDPI, vol. 11(12), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:6:p:845-:d:1414402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.